Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering
Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections...
Gespeichert in:
Veröffentlicht in: | Materials 2023-01, Vol.16 (2), p.653 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 653 |
container_title | Materials |
container_volume | 16 |
creator | Sun, Zhenhua Li, Shaopeng Li, Huiquan Liu, Mingkun Li, Zhanbing Liu, Xianjie Liu, Mingyong Liu, Qiyun Huang, Zhaohui |
description | Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO
that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology. |
doi_str_mv | 10.3390/ma16020653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768231953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</originalsourceid><addsrcrecordid>eNpdkctq3DAUhkVpaEKaTR6gCLopBbe62NJoU2hMbzAhiyRrcWwfzyjYUirJIXmEvnU15NI02uiAvv_jiJ-QY84-SWnY5xm4YoKpRr4iB9wYVXFT16-fzfvkKKUrVo6UfCXMG7IvldKqpA_InzbEGJILnp7gFm5ciDSMtA0dTJme3boBKfiBrl3eumWmLcQueMhIS-J0mSaXsSqOwWEsIz2HzQYivUw40LG4HnMnkDPGu5LP21Ccp0URHUz03Pnd5Ddvyd4IU8Kjh_uQXH7_dtH-rNZnP361X9dVXzOVK0QErYUG3emVkDg0HDQH3jCuFQdQIxrkvVY9h04I1g91VwtRo2waPhohD8mXe-_10s049OhzhMleRzdDvLMBnP3_xbut3YQba1aq0VoXwYcHQQy_F0zZzi71OE3gMSzJCq3KYtw0sqDvX6BXYYm-fG9HadFopkyhPt5TfWkiRRyfluHM7kq2_0ou8Lvn6z-hj5XKvxJeo3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767257069</pqid></control><display><type>article</type><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</creator><creatorcontrib>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</creatorcontrib><description>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO
that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16020653</identifier><identifier>PMID: 36676390</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon dioxide ; Cathodes ; Cobalt oxides ; Computed tomography ; Cordierite ; Corrosion ; Corrosion tests ; Electrode materials ; High temperature ; Lithium ; Lithium batteries ; Lithium carbonate ; Mullite ; Permeability ; Secondary ion mass spectrometry ; Silicon ; Sintering ; Sintering (powder metallurgy) ; Spectrometry ; Upgrading</subject><ispartof>Materials, 2023-01, Vol.16 (2), p.653</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</citedby><cites>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36676390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Shaopeng</creatorcontrib><creatorcontrib>Li, Huiquan</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Li, Zhanbing</creatorcontrib><creatorcontrib>Liu, Xianjie</creatorcontrib><creatorcontrib>Liu, Mingyong</creatorcontrib><creatorcontrib>Liu, Qiyun</creatorcontrib><creatorcontrib>Huang, Zhaohui</creatorcontrib><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO
that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</description><subject>Carbon dioxide</subject><subject>Cathodes</subject><subject>Cobalt oxides</subject><subject>Computed tomography</subject><subject>Cordierite</subject><subject>Corrosion</subject><subject>Corrosion tests</subject><subject>Electrode materials</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium carbonate</subject><subject>Mullite</subject><subject>Permeability</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrometry</subject><subject>Upgrading</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkctq3DAUhkVpaEKaTR6gCLopBbe62NJoU2hMbzAhiyRrcWwfzyjYUirJIXmEvnU15NI02uiAvv_jiJ-QY84-SWnY5xm4YoKpRr4iB9wYVXFT16-fzfvkKKUrVo6UfCXMG7IvldKqpA_InzbEGJILnp7gFm5ciDSMtA0dTJme3boBKfiBrl3eumWmLcQueMhIS-J0mSaXsSqOwWEsIz2HzQYivUw40LG4HnMnkDPGu5LP21Ccp0URHUz03Pnd5Ddvyd4IU8Kjh_uQXH7_dtH-rNZnP361X9dVXzOVK0QErYUG3emVkDg0HDQH3jCuFQdQIxrkvVY9h04I1g91VwtRo2waPhohD8mXe-_10s049OhzhMleRzdDvLMBnP3_xbut3YQba1aq0VoXwYcHQQy_F0zZzi71OE3gMSzJCq3KYtw0sqDvX6BXYYm-fG9HadFopkyhPt5TfWkiRRyfluHM7kq2_0ou8Lvn6z-hj5XKvxJeo3k</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Sun, Zhenhua</creator><creator>Li, Shaopeng</creator><creator>Li, Huiquan</creator><creator>Liu, Mingkun</creator><creator>Li, Zhanbing</creator><creator>Liu, Xianjie</creator><creator>Liu, Mingyong</creator><creator>Liu, Qiyun</creator><creator>Huang, Zhaohui</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230109</creationdate><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><author>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Cathodes</topic><topic>Cobalt oxides</topic><topic>Computed tomography</topic><topic>Cordierite</topic><topic>Corrosion</topic><topic>Corrosion tests</topic><topic>Electrode materials</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium carbonate</topic><topic>Mullite</topic><topic>Permeability</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrometry</topic><topic>Upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Shaopeng</creatorcontrib><creatorcontrib>Li, Huiquan</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Li, Zhanbing</creatorcontrib><creatorcontrib>Liu, Xianjie</creatorcontrib><creatorcontrib>Liu, Mingyong</creatorcontrib><creatorcontrib>Liu, Qiyun</creatorcontrib><creatorcontrib>Huang, Zhaohui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhenhua</au><au>Li, Shaopeng</au><au>Li, Huiquan</au><au>Liu, Mingkun</au><au>Li, Zhanbing</au><au>Liu, Xianjie</au><au>Liu, Mingyong</au><au>Liu, Qiyun</au><au>Huang, Zhaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-09</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>653</spage><pages>653-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO
that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36676390</pmid><doi>10.3390/ma16020653</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-01, Vol.16 (2), p.653 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865777 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Carbon dioxide Cathodes Cobalt oxides Computed tomography Cordierite Corrosion Corrosion tests Electrode materials High temperature Lithium Lithium batteries Lithium carbonate Mullite Permeability Secondary ion mass spectrometry Silicon Sintering Sintering (powder metallurgy) Spectrometry Upgrading |
title | Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Behavior%20of%20Cobalt%20Oxide%20and%20Lithium%20Carbonate%20on%20Mullite-Cordierite%20Saggar%20Used%20for%20Lithium%20Battery%20Cathode%20Material%20Sintering&rft.jtitle=Materials&rft.au=Sun,%20Zhenhua&rft.date=2023-01-09&rft.volume=16&rft.issue=2&rft.spage=653&rft.pages=653-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16020653&rft_dat=%3Cproquest_pubme%3E2768231953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767257069&rft_id=info:pmid/36676390&rfr_iscdi=true |