Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering

Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-01, Vol.16 (2), p.653
Hauptverfasser: Sun, Zhenhua, Li, Shaopeng, Li, Huiquan, Liu, Mingkun, Li, Zhanbing, Liu, Xianjie, Liu, Mingyong, Liu, Qiyun, Huang, Zhaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 653
container_title Materials
container_volume 16
creator Sun, Zhenhua
Li, Shaopeng
Li, Huiquan
Liu, Mingkun
Li, Zhanbing
Liu, Xianjie
Liu, Mingyong
Liu, Qiyun
Huang, Zhaohui
description Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.
doi_str_mv 10.3390/ma16020653
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768231953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</originalsourceid><addsrcrecordid>eNpdkctq3DAUhkVpaEKaTR6gCLopBbe62NJoU2hMbzAhiyRrcWwfzyjYUirJIXmEvnU15NI02uiAvv_jiJ-QY84-SWnY5xm4YoKpRr4iB9wYVXFT16-fzfvkKKUrVo6UfCXMG7IvldKqpA_InzbEGJILnp7gFm5ciDSMtA0dTJme3boBKfiBrl3eumWmLcQueMhIS-J0mSaXsSqOwWEsIz2HzQYivUw40LG4HnMnkDPGu5LP21Ccp0URHUz03Pnd5Ddvyd4IU8Kjh_uQXH7_dtH-rNZnP361X9dVXzOVK0QErYUG3emVkDg0HDQH3jCuFQdQIxrkvVY9h04I1g91VwtRo2waPhohD8mXe-_10s049OhzhMleRzdDvLMBnP3_xbut3YQba1aq0VoXwYcHQQy_F0zZzi71OE3gMSzJCq3KYtw0sqDvX6BXYYm-fG9HadFopkyhPt5TfWkiRRyfluHM7kq2_0ou8Lvn6z-hj5XKvxJeo3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767257069</pqid></control><display><type>article</type><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</creator><creatorcontrib>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</creatorcontrib><description>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16020653</identifier><identifier>PMID: 36676390</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon dioxide ; Cathodes ; Cobalt oxides ; Computed tomography ; Cordierite ; Corrosion ; Corrosion tests ; Electrode materials ; High temperature ; Lithium ; Lithium batteries ; Lithium carbonate ; Mullite ; Permeability ; Secondary ion mass spectrometry ; Silicon ; Sintering ; Sintering (powder metallurgy) ; Spectrometry ; Upgrading</subject><ispartof>Materials, 2023-01, Vol.16 (2), p.653</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</citedby><cites>FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36676390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Shaopeng</creatorcontrib><creatorcontrib>Li, Huiquan</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Li, Zhanbing</creatorcontrib><creatorcontrib>Liu, Xianjie</creatorcontrib><creatorcontrib>Liu, Mingyong</creatorcontrib><creatorcontrib>Liu, Qiyun</creatorcontrib><creatorcontrib>Huang, Zhaohui</creatorcontrib><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</description><subject>Carbon dioxide</subject><subject>Cathodes</subject><subject>Cobalt oxides</subject><subject>Computed tomography</subject><subject>Cordierite</subject><subject>Corrosion</subject><subject>Corrosion tests</subject><subject>Electrode materials</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium carbonate</subject><subject>Mullite</subject><subject>Permeability</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrometry</subject><subject>Upgrading</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkctq3DAUhkVpaEKaTR6gCLopBbe62NJoU2hMbzAhiyRrcWwfzyjYUirJIXmEvnU15NI02uiAvv_jiJ-QY84-SWnY5xm4YoKpRr4iB9wYVXFT16-fzfvkKKUrVo6UfCXMG7IvldKqpA_InzbEGJILnp7gFm5ciDSMtA0dTJme3boBKfiBrl3eumWmLcQueMhIS-J0mSaXsSqOwWEsIz2HzQYivUw40LG4HnMnkDPGu5LP21Ccp0URHUz03Pnd5Ddvyd4IU8Kjh_uQXH7_dtH-rNZnP361X9dVXzOVK0QErYUG3emVkDg0HDQH3jCuFQdQIxrkvVY9h04I1g91VwtRo2waPhohD8mXe-_10s049OhzhMleRzdDvLMBnP3_xbut3YQba1aq0VoXwYcHQQy_F0zZzi71OE3gMSzJCq3KYtw0sqDvX6BXYYm-fG9HadFopkyhPt5TfWkiRRyfluHM7kq2_0ou8Lvn6z-hj5XKvxJeo3k</recordid><startdate>20230109</startdate><enddate>20230109</enddate><creator>Sun, Zhenhua</creator><creator>Li, Shaopeng</creator><creator>Li, Huiquan</creator><creator>Liu, Mingkun</creator><creator>Li, Zhanbing</creator><creator>Liu, Xianjie</creator><creator>Liu, Mingyong</creator><creator>Liu, Qiyun</creator><creator>Huang, Zhaohui</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230109</creationdate><title>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</title><author>Sun, Zhenhua ; Li, Shaopeng ; Li, Huiquan ; Liu, Mingkun ; Li, Zhanbing ; Liu, Xianjie ; Liu, Mingyong ; Liu, Qiyun ; Huang, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-eeea7727a7b7823ed51a71a1501761aa6fe9e1c76c1ab220cd4b4224e3551f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Cathodes</topic><topic>Cobalt oxides</topic><topic>Computed tomography</topic><topic>Cordierite</topic><topic>Corrosion</topic><topic>Corrosion tests</topic><topic>Electrode materials</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium carbonate</topic><topic>Mullite</topic><topic>Permeability</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrometry</topic><topic>Upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhenhua</creatorcontrib><creatorcontrib>Li, Shaopeng</creatorcontrib><creatorcontrib>Li, Huiquan</creatorcontrib><creatorcontrib>Liu, Mingkun</creatorcontrib><creatorcontrib>Li, Zhanbing</creatorcontrib><creatorcontrib>Liu, Xianjie</creatorcontrib><creatorcontrib>Liu, Mingyong</creatorcontrib><creatorcontrib>Liu, Qiyun</creatorcontrib><creatorcontrib>Huang, Zhaohui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhenhua</au><au>Li, Shaopeng</au><au>Li, Huiquan</au><au>Liu, Mingkun</au><au>Li, Zhanbing</au><au>Liu, Xianjie</au><au>Liu, Mingyong</au><au>Liu, Qiyun</au><au>Huang, Zhaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-09</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>653</spage><pages>653-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36676390</pmid><doi>10.3390/ma16020653</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-01, Vol.16 (2), p.653
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865777
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Carbon dioxide
Cathodes
Cobalt oxides
Computed tomography
Cordierite
Corrosion
Corrosion tests
Electrode materials
High temperature
Lithium
Lithium batteries
Lithium carbonate
Mullite
Permeability
Secondary ion mass spectrometry
Silicon
Sintering
Sintering (powder metallurgy)
Spectrometry
Upgrading
title Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite-Cordierite Saggar Used for Lithium Battery Cathode Material Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Behavior%20of%20Cobalt%20Oxide%20and%20Lithium%20Carbonate%20on%20Mullite-Cordierite%20Saggar%20Used%20for%20Lithium%20Battery%20Cathode%20Material%20Sintering&rft.jtitle=Materials&rft.au=Sun,%20Zhenhua&rft.date=2023-01-09&rft.volume=16&rft.issue=2&rft.spage=653&rft.pages=653-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16020653&rft_dat=%3Cproquest_pubme%3E2768231953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767257069&rft_id=info:pmid/36676390&rfr_iscdi=true