Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material

3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-01, Vol.15 (2), p.255
Hauptverfasser: Liu, Jingjing, Naeem, Muhammad Awais, Al Kouzbary, Mouaz, Al Kouzbary, Hamza, Shasmin, Hanie Nadia, Arifin, Nooranida, Abd Razak, Nasrul Anuar, Abu Osman, Noor Azuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 255
container_title Polymers
container_volume 15
creator Liu, Jingjing
Naeem, Muhammad Awais
Al Kouzbary, Mouaz
Al Kouzbary, Hamza
Shasmin, Hanie Nadia
Arifin, Nooranida
Abd Razak, Nasrul Anuar
Abu Osman, Noor Azuan
description 3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.
doi_str_mv 10.3390/polym15020255
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767259734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-df66bc07dea12364949942c1a3da4da1e8e2a02bb7c7628cb6477f7756ceb6fa3</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa0K1CDIsddqpV56WfC3s5dKbRogElCktpdeLK93TBZ57WA7SPnvuxEBAXOZkeY3T_P0EPpE8CljDT5bR78diMAUUyE-oCOKFas5k_jg1TxB05zv8VhcSEnURzRhUqqGMHGE_i2cA1uq6KplcL331a1JZoACKVcxVGUF1TwO6wQ5949Q_S4Jwl1Z7Q7Yz_o29aFAV91sfQz1D5PH-dqMx73xJ-jQGZ9huu_H6O_54s_8sr76dbGcf7-qLSei1J2TsrVYdWAIZZI3vGk4tcSwzvDOEJgBNZi2rbJK0pltJVfKKSWkhVY6w47Rtyfd9aYdoLMQSjJer1M_mLTV0fT67Sb0K30XH3UzkxQLMQp83Quk-LCBXPTQZwvemwBxkzVVckZpQzkZ0S_v0Pu4SWG0t6MUFY1ifKTqJ8qmmHMC9_IMwXoXnH4T3Mh_fu3ghX6Oif0HuNeU1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767259734</pqid></control><display><type>article</type><title>Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Liu, Jingjing ; Naeem, Muhammad Awais ; Al Kouzbary, Mouaz ; Al Kouzbary, Hamza ; Shasmin, Hanie Nadia ; Arifin, Nooranida ; Abd Razak, Nasrul Anuar ; Abu Osman, Noor Azuan</creator><creatorcontrib>Liu, Jingjing ; Naeem, Muhammad Awais ; Al Kouzbary, Mouaz ; Al Kouzbary, Hamza ; Shasmin, Hanie Nadia ; Arifin, Nooranida ; Abd Razak, Nasrul Anuar ; Abu Osman, Noor Azuan</creatorcontrib><description>3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15020255</identifier><identifier>PMID: 36679135</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Amputation ; Ankle ; Carbon fiber reinforced plastics ; Compressive strength ; Fiber reinforced polymers ; Mechanical properties ; Nylon ; Prostheses ; Tensile strength ; Three dimensional printing</subject><ispartof>Polymers, 2023-01, Vol.15 (2), p.255</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-df66bc07dea12364949942c1a3da4da1e8e2a02bb7c7628cb6477f7756ceb6fa3</citedby><cites>FETCH-LOGICAL-c415t-df66bc07dea12364949942c1a3da4da1e8e2a02bb7c7628cb6477f7756ceb6fa3</cites><orcidid>0000-0003-4938-8731 ; 0000-0002-1911-015X ; 0000-0002-2853-4421 ; 0000-0002-6356-1935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862055/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862055/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36679135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Al Kouzbary, Mouaz</creatorcontrib><creatorcontrib>Al Kouzbary, Hamza</creatorcontrib><creatorcontrib>Shasmin, Hanie Nadia</creatorcontrib><creatorcontrib>Arifin, Nooranida</creatorcontrib><creatorcontrib>Abd Razak, Nasrul Anuar</creatorcontrib><creatorcontrib>Abu Osman, Noor Azuan</creatorcontrib><title>Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.</description><subject>3-D printers</subject><subject>Amputation</subject><subject>Ankle</subject><subject>Carbon fiber reinforced plastics</subject><subject>Compressive strength</subject><subject>Fiber reinforced polymers</subject><subject>Mechanical properties</subject><subject>Nylon</subject><subject>Prostheses</subject><subject>Tensile strength</subject><subject>Three dimensional printing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1PGzEQxa0K1CDIsddqpV56WfC3s5dKbRogElCktpdeLK93TBZ57WA7SPnvuxEBAXOZkeY3T_P0EPpE8CljDT5bR78diMAUUyE-oCOKFas5k_jg1TxB05zv8VhcSEnURzRhUqqGMHGE_i2cA1uq6KplcL331a1JZoACKVcxVGUF1TwO6wQ5949Q_S4Jwl1Z7Q7Yz_o29aFAV91sfQz1D5PH-dqMx73xJ-jQGZ9huu_H6O_54s_8sr76dbGcf7-qLSei1J2TsrVYdWAIZZI3vGk4tcSwzvDOEJgBNZi2rbJK0pltJVfKKSWkhVY6w47Rtyfd9aYdoLMQSjJer1M_mLTV0fT67Sb0K30XH3UzkxQLMQp83Quk-LCBXPTQZwvemwBxkzVVckZpQzkZ0S_v0Pu4SWG0t6MUFY1ifKTqJ8qmmHMC9_IMwXoXnH4T3Mh_fu3ghX6Oif0HuNeU1w</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Liu, Jingjing</creator><creator>Naeem, Muhammad Awais</creator><creator>Al Kouzbary, Mouaz</creator><creator>Al Kouzbary, Hamza</creator><creator>Shasmin, Hanie Nadia</creator><creator>Arifin, Nooranida</creator><creator>Abd Razak, Nasrul Anuar</creator><creator>Abu Osman, Noor Azuan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4938-8731</orcidid><orcidid>https://orcid.org/0000-0002-1911-015X</orcidid><orcidid>https://orcid.org/0000-0002-2853-4421</orcidid><orcidid>https://orcid.org/0000-0002-6356-1935</orcidid></search><sort><creationdate>20230104</creationdate><title>Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material</title><author>Liu, Jingjing ; Naeem, Muhammad Awais ; Al Kouzbary, Mouaz ; Al Kouzbary, Hamza ; Shasmin, Hanie Nadia ; Arifin, Nooranida ; Abd Razak, Nasrul Anuar ; Abu Osman, Noor Azuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-df66bc07dea12364949942c1a3da4da1e8e2a02bb7c7628cb6477f7756ceb6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Amputation</topic><topic>Ankle</topic><topic>Carbon fiber reinforced plastics</topic><topic>Compressive strength</topic><topic>Fiber reinforced polymers</topic><topic>Mechanical properties</topic><topic>Nylon</topic><topic>Prostheses</topic><topic>Tensile strength</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Naeem, Muhammad Awais</creatorcontrib><creatorcontrib>Al Kouzbary, Mouaz</creatorcontrib><creatorcontrib>Al Kouzbary, Hamza</creatorcontrib><creatorcontrib>Shasmin, Hanie Nadia</creatorcontrib><creatorcontrib>Arifin, Nooranida</creatorcontrib><creatorcontrib>Abd Razak, Nasrul Anuar</creatorcontrib><creatorcontrib>Abu Osman, Noor Azuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingjing</au><au>Naeem, Muhammad Awais</au><au>Al Kouzbary, Mouaz</au><au>Al Kouzbary, Hamza</au><au>Shasmin, Hanie Nadia</au><au>Arifin, Nooranida</au><au>Abd Razak, Nasrul Anuar</au><au>Abu Osman, Noor Azuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>255</spage><pages>255-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength. With the same mass, specimens with triangular fill have a higher compressive strength than those with rectangular and gyroid fills. Compared with specimens with a solid fill, specimens with a triangular fill can also provide more compressive strength in a unit mass. According to the results of standard specimens, following the requirement of strength and lightweight, 41% triangular fill is selected to manufacture the supporting part of a powered ankle-foot prosthesis. Under a compressive load of 1225 N, the strain of the assembly of the standard adaptor and the 3D-printed part is 1.32 ± 0.04%, which can meet the requirement of the design. This study can provide evidence for other 3D-printed applications with the requirement of compressive strength.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36679135</pmid><doi>10.3390/polym15020255</doi><orcidid>https://orcid.org/0000-0003-4938-8731</orcidid><orcidid>https://orcid.org/0000-0002-1911-015X</orcidid><orcidid>https://orcid.org/0000-0002-2853-4421</orcidid><orcidid>https://orcid.org/0000-0002-6356-1935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-01, Vol.15 (2), p.255
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862055
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects 3-D printers
Amputation
Ankle
Carbon fiber reinforced plastics
Compressive strength
Fiber reinforced polymers
Mechanical properties
Nylon
Prostheses
Tensile strength
Three dimensional printing
title Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Infill%20Parameters%20on%20the%20Compressive%20Strength%20of%203D-Printed%20Nylon-Based%20Material&rft.jtitle=Polymers&rft.au=Liu,%20Jingjing&rft.date=2023-01-04&rft.volume=15&rft.issue=2&rft.spage=255&rft.pages=255-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15020255&rft_dat=%3Cproquest_pubme%3E2767259734%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767259734&rft_id=info:pmid/36679135&rfr_iscdi=true