Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method

RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-02, Vol.299 (2), p.102822-102822, Article 102822
Hauptverfasser: Hayashida, Ryota, Kikuchi, Reika, Imai, Kenichiro, Kojima, Waka, Yamada, Tatsuya, Iijima, Miho, Sesaki, Hiromi, Tanaka, Keiji, Matsuda, Noriyuki, Yamano, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102822
container_issue 2
container_start_page 102822
container_title The Journal of biological chemistry
container_volume 299
creator Hayashida, Ryota
Kikuchi, Reika
Imai, Kenichiro
Kojima, Waka
Yamada, Tatsuya
Iijima, Miho
Sesaki, Hiromi
Tanaka, Keiji
Matsuda, Noriyuki
Yamano, Koji
description RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid–liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2–E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.
doi_str_mv 10.1016/j.jbc.2022.102822
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9860496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822012650</els_id><sourcerecordid>2758114777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-e831a68c2ac28da9edb4341bad980cd0060e8a34b408db764a7c3f9c462f925e3</originalsourceid><addsrcrecordid>eNp9Uc2K1TAUDqI419EHcCNZuuk1Sds0RRB0GH9gQBgU3IU0Ob1N6U06STpyXfkM-oY-ibl2HHVjNsnJ93MO50PoMSVbSih_Nm7HTm8ZYSzXTDB2B20oEWVR1vTTXbQhhNGiZbU4QQ9iHEk-VUvvo5OS17wUNd-gb-fToq1RyXqHfY-Xzl4tNllXaO_GZZcBt8Pgvhz2EHEaVMLWJQhKJ_zZpgFfvros0mGGP0o82Z2Kmb3Eo1blOgPmx9fv6wPPQ4ZxhFmFX30z0uUfg_eQBm8eonu9miI8urlP0cfX5x_O3hYX79-8O3t5UeiqpqkAUVLFhWZKM2FUC6aryop2yrSCaEMIJyBUWXUVEaZreKUaXfatrjjr806gPEUvVt956fZgNLgU1CTnYPcqHKRXVv6LODvInb-WreB5jzwbPL0xCP5qgZjk3kYN06Qc-CVK1tSC0qppmkylK1UHH2OA_rYNJfKYpRxlzlIes5Rrllnz5O_5bhW_w8uE5ysB8pauLQQZtQWnwdgAOknj7X_sfwLz2rZ-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758114777</pqid></control><display><type>article</type><title>Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hayashida, Ryota ; Kikuchi, Reika ; Imai, Kenichiro ; Kojima, Waka ; Yamada, Tatsuya ; Iijima, Miho ; Sesaki, Hiromi ; Tanaka, Keiji ; Matsuda, Noriyuki ; Yamano, Koji</creator><creatorcontrib>Hayashida, Ryota ; Kikuchi, Reika ; Imai, Kenichiro ; Kojima, Waka ; Yamada, Tatsuya ; Iijima, Miho ; Sesaki, Hiromi ; Tanaka, Keiji ; Matsuda, Noriyuki ; Yamano, Koji</creatorcontrib><description>RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid–liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2–E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102822</identifier><identifier>PMID: 36563856</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>I-kappa B Kinase - metabolism ; mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Mitophagy ; Parkin ; PINK1 ; Protein Binding ; RBR-type E3 ; ubiquitin ; Ubiquitin - metabolism ; Ubiquitin-Conjugating Enzymes - chemistry ; Ubiquitin-Conjugating Enzymes - isolation &amp; purification ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - isolation &amp; purification ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination</subject><ispartof>The Journal of biological chemistry, 2023-02, Vol.299 (2), p.102822-102822, Article 102822</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-e831a68c2ac28da9edb4341bad980cd0060e8a34b408db764a7c3f9c462f925e3</citedby><cites>FETCH-LOGICAL-c451t-e831a68c2ac28da9edb4341bad980cd0060e8a34b408db764a7c3f9c462f925e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860496/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860496/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36563856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayashida, Ryota</creatorcontrib><creatorcontrib>Kikuchi, Reika</creatorcontrib><creatorcontrib>Imai, Kenichiro</creatorcontrib><creatorcontrib>Kojima, Waka</creatorcontrib><creatorcontrib>Yamada, Tatsuya</creatorcontrib><creatorcontrib>Iijima, Miho</creatorcontrib><creatorcontrib>Sesaki, Hiromi</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Matsuda, Noriyuki</creatorcontrib><creatorcontrib>Yamano, Koji</creatorcontrib><title>Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid–liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2–E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.</description><subject>I-kappa B Kinase - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Mitophagy</subject><subject>Parkin</subject><subject>PINK1</subject><subject>Protein Binding</subject><subject>RBR-type E3</subject><subject>ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-Conjugating Enzymes - chemistry</subject><subject>Ubiquitin-Conjugating Enzymes - isolation &amp; purification</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - isolation &amp; purification</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uc2K1TAUDqI419EHcCNZuuk1Sds0RRB0GH9gQBgU3IU0Ob1N6U06STpyXfkM-oY-ibl2HHVjNsnJ93MO50PoMSVbSih_Nm7HTm8ZYSzXTDB2B20oEWVR1vTTXbQhhNGiZbU4QQ9iHEk-VUvvo5OS17wUNd-gb-fToq1RyXqHfY-Xzl4tNllXaO_GZZcBt8Pgvhz2EHEaVMLWJQhKJ_zZpgFfvros0mGGP0o82Z2Kmb3Eo1blOgPmx9fv6wPPQ4ZxhFmFX30z0uUfg_eQBm8eonu9miI8urlP0cfX5x_O3hYX79-8O3t5UeiqpqkAUVLFhWZKM2FUC6aryop2yrSCaEMIJyBUWXUVEaZreKUaXfatrjjr806gPEUvVt956fZgNLgU1CTnYPcqHKRXVv6LODvInb-WreB5jzwbPL0xCP5qgZjk3kYN06Qc-CVK1tSC0qppmkylK1UHH2OA_rYNJfKYpRxlzlIes5Rrllnz5O_5bhW_w8uE5ysB8pauLQQZtQWnwdgAOknj7X_sfwLz2rZ-</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hayashida, Ryota</creator><creator>Kikuchi, Reika</creator><creator>Imai, Kenichiro</creator><creator>Kojima, Waka</creator><creator>Yamada, Tatsuya</creator><creator>Iijima, Miho</creator><creator>Sesaki, Hiromi</creator><creator>Tanaka, Keiji</creator><creator>Matsuda, Noriyuki</creator><creator>Yamano, Koji</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230201</creationdate><title>Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method</title><author>Hayashida, Ryota ; Kikuchi, Reika ; Imai, Kenichiro ; Kojima, Waka ; Yamada, Tatsuya ; Iijima, Miho ; Sesaki, Hiromi ; Tanaka, Keiji ; Matsuda, Noriyuki ; Yamano, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-e831a68c2ac28da9edb4341bad980cd0060e8a34b408db764a7c3f9c462f925e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>I-kappa B Kinase - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Mitophagy</topic><topic>Parkin</topic><topic>PINK1</topic><topic>Protein Binding</topic><topic>RBR-type E3</topic><topic>ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-Conjugating Enzymes - chemistry</topic><topic>Ubiquitin-Conjugating Enzymes - isolation &amp; purification</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - isolation &amp; purification</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashida, Ryota</creatorcontrib><creatorcontrib>Kikuchi, Reika</creatorcontrib><creatorcontrib>Imai, Kenichiro</creatorcontrib><creatorcontrib>Kojima, Waka</creatorcontrib><creatorcontrib>Yamada, Tatsuya</creatorcontrib><creatorcontrib>Iijima, Miho</creatorcontrib><creatorcontrib>Sesaki, Hiromi</creatorcontrib><creatorcontrib>Tanaka, Keiji</creatorcontrib><creatorcontrib>Matsuda, Noriyuki</creatorcontrib><creatorcontrib>Yamano, Koji</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashida, Ryota</au><au>Kikuchi, Reika</au><au>Imai, Kenichiro</au><au>Kojima, Waka</au><au>Yamada, Tatsuya</au><au>Iijima, Miho</au><au>Sesaki, Hiromi</au><au>Tanaka, Keiji</au><au>Matsuda, Noriyuki</au><au>Yamano, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>299</volume><issue>2</issue><spage>102822</spage><epage>102822</epage><pages>102822-102822</pages><artnum>102822</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid–liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2–E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36563856</pmid><doi>10.1016/j.jbc.2022.102822</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-02, Vol.299 (2), p.102822-102822, Article 102822
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9860496
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects I-kappa B Kinase - metabolism
mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitophagy
Parkin
PINK1
Protein Binding
RBR-type E3
ubiquitin
Ubiquitin - metabolism
Ubiquitin-Conjugating Enzymes - chemistry
Ubiquitin-Conjugating Enzymes - isolation & purification
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - isolation & purification
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
title Elucidation of ubiquitin-conjugating enzymes that interact with RBR-type ubiquitin ligases using a liquid–liquid phase separation–based method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20ubiquitin-conjugating%20enzymes%20that%20interact%20with%20RBR-type%20ubiquitin%20ligases%20using%20a%20liquid%E2%80%93liquid%20phase%20separation%E2%80%93based%20method&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hayashida,%20Ryota&rft.date=2023-02-01&rft.volume=299&rft.issue=2&rft.spage=102822&rft.epage=102822&rft.pages=102822-102822&rft.artnum=102822&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102822&rft_dat=%3Cproquest_pubme%3E2758114777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758114777&rft_id=info:pmid/36563856&rft_els_id=S0021925822012650&rfr_iscdi=true