Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy

Purpose To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. Methods and materials We used commerc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Clinical Medical Physics 2023-01, Vol.24 (1), p.e13843-n/a
Hauptverfasser: Lu, Lanchun, Yang, Xiangyu, Raterman, Brian, Jiang, Xia, Meineke, Matthew, Grecula, John, Blakaj, Dukagjin, Palmer, Joshua, Raval, Raju, Thomas, Evan, Hintenlang, David, Gupta, Nilendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e13843
container_title Journal of Applied Clinical Medical Physics
container_volume 24
creator Lu, Lanchun
Yang, Xiangyu
Raterman, Brian
Jiang, Xia
Meineke, Matthew
Grecula, John
Blakaj, Dukagjin
Palmer, Joshua
Raval, Raju
Thomas, Evan
Hintenlang, David
Gupta, Nilendu
description Purpose To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. Methods and materials We used commercial MRI image phantoms to quantitatively study the MRI image distortion over period of 6 years for up to 14 1.5 and 3 T MRI scanners that could potentially be used to provide MRI images for treatment planning. With the phantom images collected from 2016 to 2022, we investigated the MRI image distortion, the dependence of distortion on the distance from the imaging isocenter, and the possible causes of large distortion discovered. Results MRI image distortion increases with the distance from the imaging isocenter. For a region of interest (ROI) with a radius of 100 mm centered at the isocenter, the mean magnitude of distortion for all MRI scanners is 0.44±0.18mm$0.44 \pm 0.18\;{\rm{mm}}$, and the maximum distortion varies from 0.52to1.31mm$0.52\;{\rm{to}}\;1.31\;{\rm{mm}}$ depending on MRI scanners. For an ROI with a radius of 200 mm centered at the isocenter, the mean magnitude of distortion increases to 0.84±0.45mm$0.84 \pm 0.45\;{\rm{mm}}$, and the range of the maximum distortion increases to 1.92−5.03mm$1.92 - 5.03\;{\rm{mm}}$ depending on MRI scanners. The distortion could reach 2 mm at 150 mm from the isocenter. Conclusion An additional margin to accommodate image distortion should be considered for treatment planning. Imaging with proper patient alignment to the isocenter is vital to reducing image distortion. We recommend performing image distortion checks annually and after major upgrade on MRI scanners.
doi_str_mv 10.1002/acm2.13843
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755348243</galeid><sourcerecordid>A755348243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5153-2bc65b7cdc5b4c1bd41c7d6c5b59b6283ee62609fe15433b72554fdb2089e2ff3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EomXhwg9AlrhUSLvEX0l8QYpWfFRqhUBwthx7vHWVxIudFO1_6I-usylV4YB88Nh-3ndmrEHoNSk2pCjoe216uiGs5uwJOiWClmspCX_6KD5BL1K6LgpCalY_RyesZLXgojpFt01KkFIPw4iDw5ffz7Hv9Q6w9WkMcfRhwK1OYHEOSmzCkMBMo78BfAAd0yzSwzDpDn9rUg4t7kGnKcJsmWYV4UfbZDIHWTHNbi5EHLX1-phhvIKo94eX6JnTXYJX9_sK_fz08cf2y_ri6-fzbXOxNoIItqatKUVbGWtEyw1pLSemsmU-CdmWtGYAJS0L6YAIzlhbUSG4sy0tagnUObZCHxbf_dT2YE2uNOpO7WNuPR5U0F79_TL4K7ULN0rWQsqaZIOze4MYfk2QRtX7ZKDr9ABhSopWrOKlkFWR0bf_oNdhikNuL1NlxQTncqY2C7XTHSg_uJDzmrws9D5_Ojif75tKCMZrmptaoXeLwMSQUgT3UD0p1DwVap4KdZyKDL953O8D-mcMMkAW4HdOc_iPlWq2l3QxvQPZ_cLO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767354490</pqid></control><display><type>article</type><title>Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy</title><source>Directory of Open Access Journals (DOAJ)</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library All Journals</source><source>EZB Electronic Journals Library</source><creator>Lu, Lanchun ; Yang, Xiangyu ; Raterman, Brian ; Jiang, Xia ; Meineke, Matthew ; Grecula, John ; Blakaj, Dukagjin ; Palmer, Joshua ; Raval, Raju ; Thomas, Evan ; Hintenlang, David ; Gupta, Nilendu</creator><creatorcontrib>Lu, Lanchun ; Yang, Xiangyu ; Raterman, Brian ; Jiang, Xia ; Meineke, Matthew ; Grecula, John ; Blakaj, Dukagjin ; Palmer, Joshua ; Raval, Raju ; Thomas, Evan ; Hintenlang, David ; Gupta, Nilendu</creatorcontrib><description>Purpose To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. Methods and materials We used commercial MRI image phantoms to quantitatively study the MRI image distortion over period of 6 years for up to 14 1.5 and 3 T MRI scanners that could potentially be used to provide MRI images for treatment planning. With the phantom images collected from 2016 to 2022, we investigated the MRI image distortion, the dependence of distortion on the distance from the imaging isocenter, and the possible causes of large distortion discovered. Results MRI image distortion increases with the distance from the imaging isocenter. For a region of interest (ROI) with a radius of 100 mm centered at the isocenter, the mean magnitude of distortion for all MRI scanners is 0.44±0.18mm$0.44 \pm 0.18\;{\rm{mm}}$, and the maximum distortion varies from 0.52to1.31mm$0.52\;{\rm{to}}\;1.31\;{\rm{mm}}$ depending on MRI scanners. For an ROI with a radius of 200 mm centered at the isocenter, the mean magnitude of distortion increases to 0.84±0.45mm$0.84 \pm 0.45\;{\rm{mm}}$, and the range of the maximum distortion increases to 1.92−5.03mm$1.92 - 5.03\;{\rm{mm}}$ depending on MRI scanners. The distortion could reach 2 mm at 150 mm from the isocenter. Conclusion An additional margin to accommodate image distortion should be considered for treatment planning. Imaging with proper patient alignment to the isocenter is vital to reducing image distortion. We recommend performing image distortion checks annually and after major upgrade on MRI scanners.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.13843</identifier><identifier>PMID: 36385457</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Editorials ; Humans ; imaging isocenter ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; margin ; Medical Imaging ; Medical imaging equipment ; MRI image distortion ; MRI image phantoms ; Phantoms, Imaging ; Planning ; Protocol ; Radiation ; Radiation therapy ; Radiosurgery ; Radiotherapy ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Image-Guided - methods ; region of interest ; Scanners ; Tumors</subject><ispartof>Journal of Applied Clinical Medical Physics, 2023-01, Vol.24 (1), p.e13843-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.</rights><rights>2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5153-2bc65b7cdc5b4c1bd41c7d6c5b59b6283ee62609fe15433b72554fdb2089e2ff3</citedby><cites>FETCH-LOGICAL-c5153-2bc65b7cdc5b4c1bd41c7d6c5b59b6283ee62609fe15433b72554fdb2089e2ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859981/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859981/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36385457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Lanchun</creatorcontrib><creatorcontrib>Yang, Xiangyu</creatorcontrib><creatorcontrib>Raterman, Brian</creatorcontrib><creatorcontrib>Jiang, Xia</creatorcontrib><creatorcontrib>Meineke, Matthew</creatorcontrib><creatorcontrib>Grecula, John</creatorcontrib><creatorcontrib>Blakaj, Dukagjin</creatorcontrib><creatorcontrib>Palmer, Joshua</creatorcontrib><creatorcontrib>Raval, Raju</creatorcontrib><creatorcontrib>Thomas, Evan</creatorcontrib><creatorcontrib>Hintenlang, David</creatorcontrib><creatorcontrib>Gupta, Nilendu</creatorcontrib><title>Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy</title><title>Journal of Applied Clinical Medical Physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Purpose To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. Methods and materials We used commercial MRI image phantoms to quantitatively study the MRI image distortion over period of 6 years for up to 14 1.5 and 3 T MRI scanners that could potentially be used to provide MRI images for treatment planning. With the phantom images collected from 2016 to 2022, we investigated the MRI image distortion, the dependence of distortion on the distance from the imaging isocenter, and the possible causes of large distortion discovered. Results MRI image distortion increases with the distance from the imaging isocenter. For a region of interest (ROI) with a radius of 100 mm centered at the isocenter, the mean magnitude of distortion for all MRI scanners is 0.44±0.18mm$0.44 \pm 0.18\;{\rm{mm}}$, and the maximum distortion varies from 0.52to1.31mm$0.52\;{\rm{to}}\;1.31\;{\rm{mm}}$ depending on MRI scanners. For an ROI with a radius of 200 mm centered at the isocenter, the mean magnitude of distortion increases to 0.84±0.45mm$0.84 \pm 0.45\;{\rm{mm}}$, and the range of the maximum distortion increases to 1.92−5.03mm$1.92 - 5.03\;{\rm{mm}}$ depending on MRI scanners. The distortion could reach 2 mm at 150 mm from the isocenter. Conclusion An additional margin to accommodate image distortion should be considered for treatment planning. Imaging with proper patient alignment to the isocenter is vital to reducing image distortion. We recommend performing image distortion checks annually and after major upgrade on MRI scanners.</description><subject>Editorials</subject><subject>Humans</subject><subject>imaging isocenter</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>margin</subject><subject>Medical Imaging</subject><subject>Medical imaging equipment</subject><subject>MRI image distortion</subject><subject>MRI image phantoms</subject><subject>Phantoms, Imaging</subject><subject>Planning</subject><subject>Protocol</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>Radiosurgery</subject><subject>Radiotherapy</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Image-Guided - methods</subject><subject>region of interest</subject><subject>Scanners</subject><subject>Tumors</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhi0EomXhwg9AlrhUSLvEX0l8QYpWfFRqhUBwthx7vHWVxIudFO1_6I-usylV4YB88Nh-3ndmrEHoNSk2pCjoe216uiGs5uwJOiWClmspCX_6KD5BL1K6LgpCalY_RyesZLXgojpFt01KkFIPw4iDw5ffz7Hv9Q6w9WkMcfRhwK1OYHEOSmzCkMBMo78BfAAd0yzSwzDpDn9rUg4t7kGnKcJsmWYV4UfbZDIHWTHNbi5EHLX1-phhvIKo94eX6JnTXYJX9_sK_fz08cf2y_ri6-fzbXOxNoIItqatKUVbGWtEyw1pLSemsmU-CdmWtGYAJS0L6YAIzlhbUSG4sy0tagnUObZCHxbf_dT2YE2uNOpO7WNuPR5U0F79_TL4K7ULN0rWQsqaZIOze4MYfk2QRtX7ZKDr9ABhSopWrOKlkFWR0bf_oNdhikNuL1NlxQTncqY2C7XTHSg_uJDzmrws9D5_Ojif75tKCMZrmptaoXeLwMSQUgT3UD0p1DwVap4KdZyKDL953O8D-mcMMkAW4HdOc_iPlWq2l3QxvQPZ_cLO</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Lu, Lanchun</creator><creator>Yang, Xiangyu</creator><creator>Raterman, Brian</creator><creator>Jiang, Xia</creator><creator>Meineke, Matthew</creator><creator>Grecula, John</creator><creator>Blakaj, Dukagjin</creator><creator>Palmer, Joshua</creator><creator>Raval, Raju</creator><creator>Thomas, Evan</creator><creator>Hintenlang, David</creator><creator>Gupta, Nilendu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202301</creationdate><title>Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy</title><author>Lu, Lanchun ; Yang, Xiangyu ; Raterman, Brian ; Jiang, Xia ; Meineke, Matthew ; Grecula, John ; Blakaj, Dukagjin ; Palmer, Joshua ; Raval, Raju ; Thomas, Evan ; Hintenlang, David ; Gupta, Nilendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5153-2bc65b7cdc5b4c1bd41c7d6c5b59b6283ee62609fe15433b72554fdb2089e2ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Editorials</topic><topic>Humans</topic><topic>imaging isocenter</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>margin</topic><topic>Medical Imaging</topic><topic>Medical imaging equipment</topic><topic>MRI image distortion</topic><topic>MRI image phantoms</topic><topic>Phantoms, Imaging</topic><topic>Planning</topic><topic>Protocol</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>Radiosurgery</topic><topic>Radiotherapy</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Image-Guided - methods</topic><topic>region of interest</topic><topic>Scanners</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lanchun</creatorcontrib><creatorcontrib>Yang, Xiangyu</creatorcontrib><creatorcontrib>Raterman, Brian</creatorcontrib><creatorcontrib>Jiang, Xia</creatorcontrib><creatorcontrib>Meineke, Matthew</creatorcontrib><creatorcontrib>Grecula, John</creatorcontrib><creatorcontrib>Blakaj, Dukagjin</creatorcontrib><creatorcontrib>Palmer, Joshua</creatorcontrib><creatorcontrib>Raval, Raju</creatorcontrib><creatorcontrib>Thomas, Evan</creatorcontrib><creatorcontrib>Hintenlang, David</creatorcontrib><creatorcontrib>Gupta, Nilendu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Applied Clinical Medical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lanchun</au><au>Yang, Xiangyu</au><au>Raterman, Brian</au><au>Jiang, Xia</au><au>Meineke, Matthew</au><au>Grecula, John</au><au>Blakaj, Dukagjin</au><au>Palmer, Joshua</au><au>Raval, Raju</au><au>Thomas, Evan</au><au>Hintenlang, David</au><au>Gupta, Nilendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy</atitle><jtitle>Journal of Applied Clinical Medical Physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2023-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>e13843</spage><epage>n/a</epage><pages>e13843-n/a</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Purpose To determine the magnitude of MRI image distortion based on 6 consecutive years of annual quality assurances/measurements on 14 MRI scanners used for radiation therapy and to provide evidence for the inclusion of additional margin for treatment planning. Methods and materials We used commercial MRI image phantoms to quantitatively study the MRI image distortion over period of 6 years for up to 14 1.5 and 3 T MRI scanners that could potentially be used to provide MRI images for treatment planning. With the phantom images collected from 2016 to 2022, we investigated the MRI image distortion, the dependence of distortion on the distance from the imaging isocenter, and the possible causes of large distortion discovered. Results MRI image distortion increases with the distance from the imaging isocenter. For a region of interest (ROI) with a radius of 100 mm centered at the isocenter, the mean magnitude of distortion for all MRI scanners is 0.44±0.18mm$0.44 \pm 0.18\;{\rm{mm}}$, and the maximum distortion varies from 0.52to1.31mm$0.52\;{\rm{to}}\;1.31\;{\rm{mm}}$ depending on MRI scanners. For an ROI with a radius of 200 mm centered at the isocenter, the mean magnitude of distortion increases to 0.84±0.45mm$0.84 \pm 0.45\;{\rm{mm}}$, and the range of the maximum distortion increases to 1.92−5.03mm$1.92 - 5.03\;{\rm{mm}}$ depending on MRI scanners. The distortion could reach 2 mm at 150 mm from the isocenter. Conclusion An additional margin to accommodate image distortion should be considered for treatment planning. Imaging with proper patient alignment to the isocenter is vital to reducing image distortion. We recommend performing image distortion checks annually and after major upgrade on MRI scanners.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36385457</pmid><doi>10.1002/acm2.13843</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-9914
ispartof Journal of Applied Clinical Medical Physics, 2023-01, Vol.24 (1), p.e13843-n/a
issn 1526-9914
1526-9914
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9859981
source Directory of Open Access Journals (DOAJ); Open Access: PubMed Central; MEDLINE; Wiley Online Library Open Access; Wiley Online Library All Journals; EZB Electronic Journals Library
subjects Editorials
Humans
imaging isocenter
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
margin
Medical Imaging
Medical imaging equipment
MRI image distortion
MRI image phantoms
Phantoms, Imaging
Planning
Protocol
Radiation
Radiation therapy
Radiosurgery
Radiotherapy
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Image-Guided - methods
region of interest
Scanners
Tumors
title Assessment of MRI image distortion based on 6 consecutive years of annual QAs and measurements on 14 MRI scanners used for radiation therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20MRI%20image%20distortion%20based%20on%206%20consecutive%20years%20of%20annual%20QAs%20and%20measurements%20on%2014%20MRI%20scanners%20used%20for%20radiation%20therapy&rft.jtitle=Journal%20of%20Applied%20Clinical%20Medical%20Physics&rft.au=Lu,%20Lanchun&rft.date=2023-01&rft.volume=24&rft.issue=1&rft.spage=e13843&rft.epage=n/a&rft.pages=e13843-n/a&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.13843&rft_dat=%3Cgale_pubme%3EA755348243%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767354490&rft_id=info:pmid/36385457&rft_galeid=A755348243&rfr_iscdi=true