Graph Theory Measures and Their Application to Neurosurgical Eloquence

Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-01, Vol.15 (2), p.556
Hauptverfasser: Tanglay, Onur, Dadario, Nicholas B, Chong, Elizabeth H N, Tang, Si Jie, Young, Isabella M, Sughrue, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 556
container_title Cancers
container_volume 15
creator Tanglay, Onur
Dadario, Nicholas B
Chong, Elizabeth H N
Tang, Si Jie
Young, Isabella M
Sughrue, Michael E
description Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in brain 'eloquence'. Advances in connectomic mapping efforts through diffusion tractography allow for utilization of non-invasive imaging and statistical modeling to graphically represent the brain. Extending the definition of brain eloquence to graph theory measures of hubness and centrality may help to improve our understanding of individual variability in brain eloquence and lesion responses. While functional deficits cannot be immediately determined intra-operatively, there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to existing surgical navigation modalities to improve individual surgical outcomes. This review aims to outline and review current research surrounding novel graph theoretical concepts of hubness, centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning and intra-operative navigation in neurosurgery.
doi_str_mv 10.3390/cancers15020556
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9857081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768229837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-91561293a3cafd4e0e6e07331ba977dbee6158e4b53f33c27ca9b551d238f42e3</originalsourceid><addsrcrecordid>eNpdkc9LwzAUx4MobsydvUnBi5dqfjRJcxFENhWmXvQc0vR1q3RNTVph_70ZmzLN5YX3PvnyffkidE7wNWMK31jTWvCBcEwx5-IIjSmWNBVCZccH9xGahvCB42GMSCFP0YgJISnH2RjNH7zpVsnbCpzfJM9gwuAhJKYtt73aJ3dd19TW9LVrk94lLzB4F5ll7DXJrHGfA0QXZ-ikMk2A6b5O0Pt89nb_mC5eH57u7xapzSjpU0W4IFQxw6ypygwwCMAy2iqMkrIsAAThOWQFZxVjlkprVME5KSnLq4wCm6DbnW43FGsoLbS9N43ufL02fqOdqfXfSVuv9NJ9aZVziXMSBa72An5rPfR6XQcLTWNacEPQVIqcUpUzGdHLf-iHG3wb19tSkuS5ICpSNzvKxn8JHqpfMwTrbUz6X0zxxcXhDr_8TyjsGxEWj1s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767188619</pqid></control><display><type>article</type><title>Graph Theory Measures and Their Application to Neurosurgical Eloquence</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Tanglay, Onur ; Dadario, Nicholas B ; Chong, Elizabeth H N ; Tang, Si Jie ; Young, Isabella M ; Sughrue, Michael E</creator><creatorcontrib>Tanglay, Onur ; Dadario, Nicholas B ; Chong, Elizabeth H N ; Tang, Si Jie ; Young, Isabella M ; Sughrue, Michael E</creatorcontrib><description>Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in brain 'eloquence'. Advances in connectomic mapping efforts through diffusion tractography allow for utilization of non-invasive imaging and statistical modeling to graphically represent the brain. Extending the definition of brain eloquence to graph theory measures of hubness and centrality may help to improve our understanding of individual variability in brain eloquence and lesion responses. While functional deficits cannot be immediately determined intra-operatively, there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to existing surgical navigation modalities to improve individual surgical outcomes. This review aims to outline and review current research surrounding novel graph theoretical concepts of hubness, centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning and intra-operative navigation in neurosurgery.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15020556</identifier><identifier>PMID: 36672504</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Brain mapping ; Brain research ; Electroencephalography ; Functional anatomy ; Functional magnetic resonance imaging ; Magnetic resonance imaging ; Mathematical models ; Measurement techniques ; Methods ; Neuroimaging ; Neurosciences ; Neurosurgery ; Patients ; Review ; Statistical analysis ; Structure-function relationships</subject><ispartof>Cancers, 2023-01, Vol.15 (2), p.556</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-91561293a3cafd4e0e6e07331ba977dbee6158e4b53f33c27ca9b551d238f42e3</citedby><cites>FETCH-LOGICAL-c421t-91561293a3cafd4e0e6e07331ba977dbee6158e4b53f33c27ca9b551d238f42e3</cites><orcidid>0000-0002-8657-187X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857081/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857081/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36672504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanglay, Onur</creatorcontrib><creatorcontrib>Dadario, Nicholas B</creatorcontrib><creatorcontrib>Chong, Elizabeth H N</creatorcontrib><creatorcontrib>Tang, Si Jie</creatorcontrib><creatorcontrib>Young, Isabella M</creatorcontrib><creatorcontrib>Sughrue, Michael E</creatorcontrib><title>Graph Theory Measures and Their Application to Neurosurgical Eloquence</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in brain 'eloquence'. Advances in connectomic mapping efforts through diffusion tractography allow for utilization of non-invasive imaging and statistical modeling to graphically represent the brain. Extending the definition of brain eloquence to graph theory measures of hubness and centrality may help to improve our understanding of individual variability in brain eloquence and lesion responses. While functional deficits cannot be immediately determined intra-operatively, there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to existing surgical navigation modalities to improve individual surgical outcomes. This review aims to outline and review current research surrounding novel graph theoretical concepts of hubness, centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning and intra-operative navigation in neurosurgery.</description><subject>Brain mapping</subject><subject>Brain research</subject><subject>Electroencephalography</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Measurement techniques</subject><subject>Methods</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Patients</subject><subject>Review</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9LwzAUx4MobsydvUnBi5dqfjRJcxFENhWmXvQc0vR1q3RNTVph_70ZmzLN5YX3PvnyffkidE7wNWMK31jTWvCBcEwx5-IIjSmWNBVCZccH9xGahvCB42GMSCFP0YgJISnH2RjNH7zpVsnbCpzfJM9gwuAhJKYtt73aJ3dd19TW9LVrk94lLzB4F5ll7DXJrHGfA0QXZ-ikMk2A6b5O0Pt89nb_mC5eH57u7xapzSjpU0W4IFQxw6ypygwwCMAy2iqMkrIsAAThOWQFZxVjlkprVME5KSnLq4wCm6DbnW43FGsoLbS9N43ufL02fqOdqfXfSVuv9NJ9aZVziXMSBa72An5rPfR6XQcLTWNacEPQVIqcUpUzGdHLf-iHG3wb19tSkuS5ICpSNzvKxn8JHqpfMwTrbUz6X0zxxcXhDr_8TyjsGxEWj1s</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Tanglay, Onur</creator><creator>Dadario, Nicholas B</creator><creator>Chong, Elizabeth H N</creator><creator>Tang, Si Jie</creator><creator>Young, Isabella M</creator><creator>Sughrue, Michael E</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8657-187X</orcidid></search><sort><creationdate>20230116</creationdate><title>Graph Theory Measures and Their Application to Neurosurgical Eloquence</title><author>Tanglay, Onur ; Dadario, Nicholas B ; Chong, Elizabeth H N ; Tang, Si Jie ; Young, Isabella M ; Sughrue, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-91561293a3cafd4e0e6e07331ba977dbee6158e4b53f33c27ca9b551d238f42e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain mapping</topic><topic>Brain research</topic><topic>Electroencephalography</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Measurement techniques</topic><topic>Methods</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Patients</topic><topic>Review</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanglay, Onur</creatorcontrib><creatorcontrib>Dadario, Nicholas B</creatorcontrib><creatorcontrib>Chong, Elizabeth H N</creatorcontrib><creatorcontrib>Tang, Si Jie</creatorcontrib><creatorcontrib>Young, Isabella M</creatorcontrib><creatorcontrib>Sughrue, Michael E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanglay, Onur</au><au>Dadario, Nicholas B</au><au>Chong, Elizabeth H N</au><au>Tang, Si Jie</au><au>Young, Isabella M</au><au>Sughrue, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Theory Measures and Their Application to Neurosurgical Eloquence</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-01-16</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>556</spage><pages>556-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since there is significant clinical variability in post-operative lesions suffered by patients who undergo surgery in the same areas deemed compensable, there is an unknown degree of inter-individual variability in brain 'eloquence'. Advances in connectomic mapping efforts through diffusion tractography allow for utilization of non-invasive imaging and statistical modeling to graphically represent the brain. Extending the definition of brain eloquence to graph theory measures of hubness and centrality may help to improve our understanding of individual variability in brain eloquence and lesion responses. While functional deficits cannot be immediately determined intra-operatively, there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to existing surgical navigation modalities to improve individual surgical outcomes. This review aims to outline and review current research surrounding novel graph theoretical concepts of hubness, centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning and intra-operative navigation in neurosurgery.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36672504</pmid><doi>10.3390/cancers15020556</doi><orcidid>https://orcid.org/0000-0002-8657-187X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-01, Vol.15 (2), p.556
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9857081
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Brain mapping
Brain research
Electroencephalography
Functional anatomy
Functional magnetic resonance imaging
Magnetic resonance imaging
Mathematical models
Measurement techniques
Methods
Neuroimaging
Neurosciences
Neurosurgery
Patients
Review
Statistical analysis
Structure-function relationships
title Graph Theory Measures and Their Application to Neurosurgical Eloquence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Theory%20Measures%20and%20Their%20Application%20to%20Neurosurgical%20Eloquence&rft.jtitle=Cancers&rft.au=Tanglay,%20Onur&rft.date=2023-01-16&rft.volume=15&rft.issue=2&rft.spage=556&rft.pages=556-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15020556&rft_dat=%3Cproquest_pubme%3E2768229837%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767188619&rft_id=info:pmid/36672504&rfr_iscdi=true