A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy
Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices fr...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2023-01, Vol.24 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 24 |
creator | Deng, Wenxuan Li, Bolun Wang, Jiawei Jiang, Wei Yan, Xiting Li, Ningshan Vukmirovic, Milica Kaminski, Naftali Wang, Jing Zhao, Hongyu |
description | Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions. |
doi_str_mv | 10.1093/bib/bbac616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9851324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac616</oup_id><sourcerecordid>2765071448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</originalsourceid><addsrcrecordid>eNp9kctrFTEUxoNY7ENX7iUgSEHG5jXJzEaoRa1QcKPrcPKYNnUmuSYzV24X_dvN9V6LunB1Die_83G-fAg9p-QNJT0_M8GcGQNWUvkIHVGhVCNIKx5ve6maVkh-iI5LuSWEEdXRJ-iQS8kp77sjdH-OY1r7Eb-DjS8BIh4yTP5Hyt_wkDK-gTylGO5CvMYh1skEc0gRg82pFDyHUhZfMESHy7y4UPs5VdJmD8Vj68cRz5uVx87bFNdpXPbrdslgN0_RwQBj8c_29QR9_fD-y8Vlc_X546eL86vGcknnxnWyE4LTtifKKeI6xknviTFcCiaZY65OAaQbOPW9Ndw4Ziko2xsrhOv5CXq7010tZvLO-jhnGPUqhwnyRicI-u-XGG70dVrrvmspZ6IKnO4FcvpeHc96CmXrDqJPS9FMyZYoKkRX0Zf_oLdpybHa05xSLiSrqVXq9Y769ZHZDw_HUKK3ueqaq97nWukXf97_wP4OsgKvdkBaVv9V-gmiea-i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113462093</pqid></control><display><type>article</type><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><source>Oxford Journals Open Access Collection</source><creator>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</creator><creatorcontrib>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</creatorcontrib><description>Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac616</identifier><identifier>PMID: 36631398</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Aorta ; Bayes Theorem ; Bayesian analysis ; Bioaccumulation ; Bronchus ; Cell lines ; Deconvolution ; Gene expression ; Gene Expression Profiling ; Gene sequencing ; Heterogeneity ; Lavage ; Peripheral blood ; Problem Solving Protocol ; Ribonucleic acid ; RNA ; Robustness ; Sequence Analysis, RNA ; Single-Cell Analysis ; Transcriptome ; Transcriptomics</subject><ispartof>Briefings in bioinformatics, 2023-01, Vol.24 (1)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</cites><orcidid>0000-0002-7078-7107 ; 0000-0001-6120-5278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851324/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851324/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1601,27907,27908,53774,53776</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac616$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36631398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Wenxuan</creatorcontrib><creatorcontrib>Li, Bolun</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Li, Ningshan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</description><subject>Accuracy</subject><subject>Aorta</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioaccumulation</subject><subject>Bronchus</subject><subject>Cell lines</subject><subject>Deconvolution</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Heterogeneity</subject><subject>Lavage</subject><subject>Peripheral blood</subject><subject>Problem Solving Protocol</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Robustness</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctrFTEUxoNY7ENX7iUgSEHG5jXJzEaoRa1QcKPrcPKYNnUmuSYzV24X_dvN9V6LunB1Die_83G-fAg9p-QNJT0_M8GcGQNWUvkIHVGhVCNIKx5ve6maVkh-iI5LuSWEEdXRJ-iQS8kp77sjdH-OY1r7Eb-DjS8BIh4yTP5Hyt_wkDK-gTylGO5CvMYh1skEc0gRg82pFDyHUhZfMESHy7y4UPs5VdJmD8Vj68cRz5uVx87bFNdpXPbrdslgN0_RwQBj8c_29QR9_fD-y8Vlc_X546eL86vGcknnxnWyE4LTtifKKeI6xknviTFcCiaZY65OAaQbOPW9Ndw4Ziko2xsrhOv5CXq7010tZvLO-jhnGPUqhwnyRicI-u-XGG70dVrrvmspZ6IKnO4FcvpeHc96CmXrDqJPS9FMyZYoKkRX0Zf_oLdpybHa05xSLiSrqVXq9Y769ZHZDw_HUKK3ueqaq97nWukXf97_wP4OsgKvdkBaVv9V-gmiea-i</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Deng, Wenxuan</creator><creator>Li, Bolun</creator><creator>Wang, Jiawei</creator><creator>Jiang, Wei</creator><creator>Yan, Xiting</creator><creator>Li, Ningshan</creator><creator>Vukmirovic, Milica</creator><creator>Kaminski, Naftali</creator><creator>Wang, Jing</creator><creator>Zhao, Hongyu</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7078-7107</orcidid><orcidid>https://orcid.org/0000-0001-6120-5278</orcidid></search><sort><creationdate>20230119</creationdate><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><author>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aorta</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioaccumulation</topic><topic>Bronchus</topic><topic>Cell lines</topic><topic>Deconvolution</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Heterogeneity</topic><topic>Lavage</topic><topic>Peripheral blood</topic><topic>Problem Solving Protocol</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Robustness</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wenxuan</creatorcontrib><creatorcontrib>Li, Bolun</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Li, Ningshan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Wenxuan</au><au>Li, Bolun</au><au>Wang, Jiawei</au><au>Jiang, Wei</au><au>Yan, Xiting</au><au>Li, Ningshan</au><au>Vukmirovic, Milica</au><au>Kaminski, Naftali</au><au>Wang, Jing</au><au>Zhao, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36631398</pmid><doi>10.1093/bib/bbac616</doi><orcidid>https://orcid.org/0000-0002-7078-7107</orcidid><orcidid>https://orcid.org/0000-0001-6120-5278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2023-01, Vol.24 (1) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9851324 |
source | Oxford Journals Open Access Collection |
subjects | Accuracy Aorta Bayes Theorem Bayesian analysis Bioaccumulation Bronchus Cell lines Deconvolution Gene expression Gene Expression Profiling Gene sequencing Heterogeneity Lavage Peripheral blood Problem Solving Protocol Ribonucleic acid RNA Robustness Sequence Analysis, RNA Single-Cell Analysis Transcriptome Transcriptomics |
title | A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Bayesian%20framework%20for%20harmonizing%20information%20across%20tissues%20and%20studies%20to%20increase%20cell%20type%20deconvolution%20accuracy&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Deng,%20Wenxuan&rft.date=2023-01-19&rft.volume=24&rft.issue=1&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac616&rft_dat=%3Cproquest_TOX%3E2765071448%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113462093&rft_id=info:pmid/36631398&rft_oup_id=10.1093/bib/bbac616&rfr_iscdi=true |