A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy

Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2023-01, Vol.24 (1)
Hauptverfasser: Deng, Wenxuan, Li, Bolun, Wang, Jiawei, Jiang, Wei, Yan, Xiting, Li, Ningshan, Vukmirovic, Milica, Kaminski, Naftali, Wang, Jing, Zhao, Hongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Briefings in bioinformatics
container_volume 24
creator Deng, Wenxuan
Li, Bolun
Wang, Jiawei
Jiang, Wei
Yan, Xiting
Li, Ningshan
Vukmirovic, Milica
Kaminski, Naftali
Wang, Jing
Zhao, Hongyu
description Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
doi_str_mv 10.1093/bib/bbac616
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9851324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac616</oup_id><sourcerecordid>2765071448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</originalsourceid><addsrcrecordid>eNp9kctrFTEUxoNY7ENX7iUgSEHG5jXJzEaoRa1QcKPrcPKYNnUmuSYzV24X_dvN9V6LunB1Die_83G-fAg9p-QNJT0_M8GcGQNWUvkIHVGhVCNIKx5ve6maVkh-iI5LuSWEEdXRJ-iQS8kp77sjdH-OY1r7Eb-DjS8BIh4yTP5Hyt_wkDK-gTylGO5CvMYh1skEc0gRg82pFDyHUhZfMESHy7y4UPs5VdJmD8Vj68cRz5uVx87bFNdpXPbrdslgN0_RwQBj8c_29QR9_fD-y8Vlc_X546eL86vGcknnxnWyE4LTtifKKeI6xknviTFcCiaZY65OAaQbOPW9Ndw4Ziko2xsrhOv5CXq7010tZvLO-jhnGPUqhwnyRicI-u-XGG70dVrrvmspZ6IKnO4FcvpeHc96CmXrDqJPS9FMyZYoKkRX0Zf_oLdpybHa05xSLiSrqVXq9Y769ZHZDw_HUKK3ueqaq97nWukXf97_wP4OsgKvdkBaVv9V-gmiea-i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113462093</pqid></control><display><type>article</type><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><source>Oxford Journals Open Access Collection</source><creator>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</creator><creatorcontrib>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</creatorcontrib><description>Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac616</identifier><identifier>PMID: 36631398</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Accuracy ; Aorta ; Bayes Theorem ; Bayesian analysis ; Bioaccumulation ; Bronchus ; Cell lines ; Deconvolution ; Gene expression ; Gene Expression Profiling ; Gene sequencing ; Heterogeneity ; Lavage ; Peripheral blood ; Problem Solving Protocol ; Ribonucleic acid ; RNA ; Robustness ; Sequence Analysis, RNA ; Single-Cell Analysis ; Transcriptome ; Transcriptomics</subject><ispartof>Briefings in bioinformatics, 2023-01, Vol.24 (1)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</cites><orcidid>0000-0002-7078-7107 ; 0000-0001-6120-5278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851324/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851324/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1601,27907,27908,53774,53776</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac616$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36631398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Wenxuan</creatorcontrib><creatorcontrib>Li, Bolun</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Li, Ningshan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</description><subject>Accuracy</subject><subject>Aorta</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bioaccumulation</subject><subject>Bronchus</subject><subject>Cell lines</subject><subject>Deconvolution</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Heterogeneity</subject><subject>Lavage</subject><subject>Peripheral blood</subject><subject>Problem Solving Protocol</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Robustness</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>Transcriptome</subject><subject>Transcriptomics</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctrFTEUxoNY7ENX7iUgSEHG5jXJzEaoRa1QcKPrcPKYNnUmuSYzV24X_dvN9V6LunB1Die_83G-fAg9p-QNJT0_M8GcGQNWUvkIHVGhVCNIKx5ve6maVkh-iI5LuSWEEdXRJ-iQS8kp77sjdH-OY1r7Eb-DjS8BIh4yTP5Hyt_wkDK-gTylGO5CvMYh1skEc0gRg82pFDyHUhZfMESHy7y4UPs5VdJmD8Vj68cRz5uVx87bFNdpXPbrdslgN0_RwQBj8c_29QR9_fD-y8Vlc_X546eL86vGcknnxnWyE4LTtifKKeI6xknviTFcCiaZY65OAaQbOPW9Ndw4Ziko2xsrhOv5CXq7010tZvLO-jhnGPUqhwnyRicI-u-XGG70dVrrvmspZ6IKnO4FcvpeHc96CmXrDqJPS9FMyZYoKkRX0Zf_oLdpybHa05xSLiSrqVXq9Y769ZHZDw_HUKK3ueqaq97nWukXf97_wP4OsgKvdkBaVv9V-gmiea-i</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Deng, Wenxuan</creator><creator>Li, Bolun</creator><creator>Wang, Jiawei</creator><creator>Jiang, Wei</creator><creator>Yan, Xiting</creator><creator>Li, Ningshan</creator><creator>Vukmirovic, Milica</creator><creator>Kaminski, Naftali</creator><creator>Wang, Jing</creator><creator>Zhao, Hongyu</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7078-7107</orcidid><orcidid>https://orcid.org/0000-0001-6120-5278</orcidid></search><sort><creationdate>20230119</creationdate><title>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</title><author>Deng, Wenxuan ; Li, Bolun ; Wang, Jiawei ; Jiang, Wei ; Yan, Xiting ; Li, Ningshan ; Vukmirovic, Milica ; Kaminski, Naftali ; Wang, Jing ; Zhao, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d86844315907d70d82309e0bb364262d2dd70aa6df31e9cb3bd2c1a7c9bc44d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aorta</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bioaccumulation</topic><topic>Bronchus</topic><topic>Cell lines</topic><topic>Deconvolution</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Heterogeneity</topic><topic>Lavage</topic><topic>Peripheral blood</topic><topic>Problem Solving Protocol</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Robustness</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>Transcriptome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wenxuan</creatorcontrib><creatorcontrib>Li, Bolun</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Li, Ningshan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Wenxuan</au><au>Li, Bolun</au><au>Wang, Jiawei</au><au>Jiang, Wei</au><au>Yan, Xiting</au><au>Li, Ningshan</au><au>Vukmirovic, Milica</au><au>Kaminski, Naftali</au><au>Wang, Jing</au><au>Zhao, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2023-01-19</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36631398</pmid><doi>10.1093/bib/bbac616</doi><orcidid>https://orcid.org/0000-0002-7078-7107</orcidid><orcidid>https://orcid.org/0000-0001-6120-5278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2023-01, Vol.24 (1)
issn 1467-5463
1477-4054
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9851324
source Oxford Journals Open Access Collection
subjects Accuracy
Aorta
Bayes Theorem
Bayesian analysis
Bioaccumulation
Bronchus
Cell lines
Deconvolution
Gene expression
Gene Expression Profiling
Gene sequencing
Heterogeneity
Lavage
Peripheral blood
Problem Solving Protocol
Ribonucleic acid
RNA
Robustness
Sequence Analysis, RNA
Single-Cell Analysis
Transcriptome
Transcriptomics
title A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20Bayesian%20framework%20for%20harmonizing%20information%20across%20tissues%20and%20studies%20to%20increase%20cell%20type%20deconvolution%20accuracy&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Deng,%20Wenxuan&rft.date=2023-01-19&rft.volume=24&rft.issue=1&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac616&rft_dat=%3Cproquest_TOX%3E2765071448%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113462093&rft_id=info:pmid/36631398&rft_oup_id=10.1093/bib/bbac616&rfr_iscdi=true