Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage

•A number of EEG features have been shown to be predictive of delayed cerebral ischemia (DCI), but a continuous assessment of multidimensional EEG features is lacking.•Combining spectral and epileptiform discharge feature information, using automated calculations, allows for dynamic prediction of DC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology 2022-11, Vol.143, p.97-106
Hauptverfasser: Zheng, Wei-Long, Kim, Jennifer A., Elmer, Jonathan, Zafar, Sahar F., Ghanta, Manohar, Moura Junior, Valdery, Patel, Aman, Rosenthal, Eric, Brandon Westover, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue
container_start_page 97
container_title Clinical neurophysiology
container_volume 143
creator Zheng, Wei-Long
Kim, Jennifer A.
Elmer, Jonathan
Zafar, Sahar F.
Ghanta, Manohar
Moura Junior, Valdery
Patel, Aman
Rosenthal, Eric
Brandon Westover, M.
description •A number of EEG features have been shown to be predictive of delayed cerebral ischemia (DCI), but a continuous assessment of multidimensional EEG features is lacking.•Combining spectral and epileptiform discharge feature information, using automated calculations, allows for dynamic prediction of DCI.•This dynamic multi-feature assessment increases the feasibility of implementing interventions in response to our EEG derived DCI risk probability. Delayed cerebral ischemia (DCI) is a leading complication of aneurysmal subarachnoid hemorrhage (SAH) and electroencephalography (EEG) is increasingly used to evaluate DCI risk. Our goal is to develop an automated DCI prediction algorithm integrating multiple EEG features over time. We assess 113 moderate to severe grade SAH patients to develop a machine learning model that predicts DCI risk using multiple EEG features. Multiple EEG features discriminate between DCI and non-DCI patients when aligned either to SAH time or to DCI onset. DCI and non-DCI patients have significant differences in alpha-delta ratio (0.08 vs 0.05, p 
doi_str_mv 10.1016/j.clinph.2022.08.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9847346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138824572200877X</els_id><sourcerecordid>2720424290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-976bc43db57ec4ef4551165763c74fe85c3660a3697cc8834c960a77eb7e74763</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaDZJ_0EpPvZiR5ZkSb4UlmWbBgK5JIechDwex1psayvZC_n31bJp2l5y0mg-3vl4CPlS0qKkpbzeFTC4ad8XjDJWUF1Qxj-QVakVy3VdsY_J5lrnTFTqnFzEuKOUKirYJ3LOZamZqtiKPK2X2Y92xjbbbm_yxsZk7QO2Dmbnp8x3WYuDfUlewIBNsEPmIvQ4OpvZbsaQxaWxwUI_eddmKeBD6O0zXpGzzg4RP7--l-Txx_Zh8zO_u7-53azvchCSz3mtZAOCt02lEAR2oqrKUlZKclCiQ10Bl5JaLmsFoDUXUKevUtgoVCKlXZLvJ9390ozYAk5zGtLsgxtteDHeOvN_ZHK9efYHU2uhuDgKfHsVCP7XgnE2Y9oQh8FO6JdomGLpaoLVNKWKUyoEH2PA7q1NSc2RitmZExVzpGKoNolKKvv674hvRX8w_N0B06EODoOJ4HCChCEgzKb17v0OvwFuHaFO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720424290</pqid></control><display><type>article</type><title>Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Wei-Long ; Kim, Jennifer A. ; Elmer, Jonathan ; Zafar, Sahar F. ; Ghanta, Manohar ; Moura Junior, Valdery ; Patel, Aman ; Rosenthal, Eric ; Brandon Westover, M.</creator><creatorcontrib>Zheng, Wei-Long ; Kim, Jennifer A. ; Elmer, Jonathan ; Zafar, Sahar F. ; Ghanta, Manohar ; Moura Junior, Valdery ; Patel, Aman ; Rosenthal, Eric ; Brandon Westover, M.</creatorcontrib><description>•A number of EEG features have been shown to be predictive of delayed cerebral ischemia (DCI), but a continuous assessment of multidimensional EEG features is lacking.•Combining spectral and epileptiform discharge feature information, using automated calculations, allows for dynamic prediction of DCI.•This dynamic multi-feature assessment increases the feasibility of implementing interventions in response to our EEG derived DCI risk probability. Delayed cerebral ischemia (DCI) is a leading complication of aneurysmal subarachnoid hemorrhage (SAH) and electroencephalography (EEG) is increasingly used to evaluate DCI risk. Our goal is to develop an automated DCI prediction algorithm integrating multiple EEG features over time. We assess 113 moderate to severe grade SAH patients to develop a machine learning model that predicts DCI risk using multiple EEG features. Multiple EEG features discriminate between DCI and non-DCI patients when aligned either to SAH time or to DCI onset. DCI and non-DCI patients have significant differences in alpha-delta ratio (0.08 vs 0.05, p &lt; 0.05) and percent alpha variability (0.06 vs 0.04, p &lt; 0.05), Shannon entropy (p &lt; 0.05) and epileptiform discharge burden (205 vs 91 discharges per hour, p &lt; 0.05) based on whole brain and vascular territory averaging. Our model improves predictions by emphasizing the most informative features at a given time with an area under the receiver-operator curve of 0.73, by day 5 after SAH and good calibration between 48–72 hours (calibration error 0.13). Our proposed model obtains good performance in DCI prediction. We leverage machine learning to enable rapid, automated, multi-featured EEG assessment and has the potential to increase the utility of EEG for DCI prediction.</description><identifier>ISSN: 1388-2457</identifier><identifier>EISSN: 1872-8952</identifier><identifier>DOI: 10.1016/j.clinph.2022.08.023</identifier><identifier>PMID: 36182752</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biomarkers ; Brain ; Brain Ischemia - complications ; Brain Ischemia - etiology ; Cerebral Infarction ; Delayed cerebral ischemia ; EEG ; Electroencephalography - adverse effects ; Epileptiform discharges ; Humans ; Machine learning ; Subarachnoid hemorrhage ; Subarachnoid Hemorrhage - complications ; Subarachnoid Hemorrhage - diagnosis</subject><ispartof>Clinical neurophysiology, 2022-11, Vol.143, p.97-106</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-976bc43db57ec4ef4551165763c74fe85c3660a3697cc8834c960a77eb7e74763</citedby><cites>FETCH-LOGICAL-c463t-976bc43db57ec4ef4551165763c74fe85c3660a3697cc8834c960a77eb7e74763</cites><orcidid>0000-0003-3072-6198 ; 0000-0003-3900-356X ; 0000-0002-9474-6369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S138824572200877X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36182752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wei-Long</creatorcontrib><creatorcontrib>Kim, Jennifer A.</creatorcontrib><creatorcontrib>Elmer, Jonathan</creatorcontrib><creatorcontrib>Zafar, Sahar F.</creatorcontrib><creatorcontrib>Ghanta, Manohar</creatorcontrib><creatorcontrib>Moura Junior, Valdery</creatorcontrib><creatorcontrib>Patel, Aman</creatorcontrib><creatorcontrib>Rosenthal, Eric</creatorcontrib><creatorcontrib>Brandon Westover, M.</creatorcontrib><title>Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage</title><title>Clinical neurophysiology</title><addtitle>Clin Neurophysiol</addtitle><description>•A number of EEG features have been shown to be predictive of delayed cerebral ischemia (DCI), but a continuous assessment of multidimensional EEG features is lacking.•Combining spectral and epileptiform discharge feature information, using automated calculations, allows for dynamic prediction of DCI.•This dynamic multi-feature assessment increases the feasibility of implementing interventions in response to our EEG derived DCI risk probability. Delayed cerebral ischemia (DCI) is a leading complication of aneurysmal subarachnoid hemorrhage (SAH) and electroencephalography (EEG) is increasingly used to evaluate DCI risk. Our goal is to develop an automated DCI prediction algorithm integrating multiple EEG features over time. We assess 113 moderate to severe grade SAH patients to develop a machine learning model that predicts DCI risk using multiple EEG features. Multiple EEG features discriminate between DCI and non-DCI patients when aligned either to SAH time or to DCI onset. DCI and non-DCI patients have significant differences in alpha-delta ratio (0.08 vs 0.05, p &lt; 0.05) and percent alpha variability (0.06 vs 0.04, p &lt; 0.05), Shannon entropy (p &lt; 0.05) and epileptiform discharge burden (205 vs 91 discharges per hour, p &lt; 0.05) based on whole brain and vascular territory averaging. Our model improves predictions by emphasizing the most informative features at a given time with an area under the receiver-operator curve of 0.73, by day 5 after SAH and good calibration between 48–72 hours (calibration error 0.13). Our proposed model obtains good performance in DCI prediction. We leverage machine learning to enable rapid, automated, multi-featured EEG assessment and has the potential to increase the utility of EEG for DCI prediction.</description><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain Ischemia - complications</subject><subject>Brain Ischemia - etiology</subject><subject>Cerebral Infarction</subject><subject>Delayed cerebral ischemia</subject><subject>EEG</subject><subject>Electroencephalography - adverse effects</subject><subject>Epileptiform discharges</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Subarachnoid hemorrhage</subject><subject>Subarachnoid Hemorrhage - complications</subject><subject>Subarachnoid Hemorrhage - diagnosis</subject><issn>1388-2457</issn><issn>1872-8952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVpaDZJ_0EpPvZiR5ZkSb4UlmWbBgK5JIechDwex1psayvZC_n31bJp2l5y0mg-3vl4CPlS0qKkpbzeFTC4ad8XjDJWUF1Qxj-QVakVy3VdsY_J5lrnTFTqnFzEuKOUKirYJ3LOZamZqtiKPK2X2Y92xjbbbm_yxsZk7QO2Dmbnp8x3WYuDfUlewIBNsEPmIvQ4OpvZbsaQxaWxwUI_eddmKeBD6O0zXpGzzg4RP7--l-Txx_Zh8zO_u7-53azvchCSz3mtZAOCt02lEAR2oqrKUlZKclCiQ10Bl5JaLmsFoDUXUKevUtgoVCKlXZLvJ9390ozYAk5zGtLsgxtteDHeOvN_ZHK9efYHU2uhuDgKfHsVCP7XgnE2Y9oQh8FO6JdomGLpaoLVNKWKUyoEH2PA7q1NSc2RitmZExVzpGKoNolKKvv674hvRX8w_N0B06EODoOJ4HCChCEgzKb17v0OvwFuHaFO</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Zheng, Wei-Long</creator><creator>Kim, Jennifer A.</creator><creator>Elmer, Jonathan</creator><creator>Zafar, Sahar F.</creator><creator>Ghanta, Manohar</creator><creator>Moura Junior, Valdery</creator><creator>Patel, Aman</creator><creator>Rosenthal, Eric</creator><creator>Brandon Westover, M.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3072-6198</orcidid><orcidid>https://orcid.org/0000-0003-3900-356X</orcidid><orcidid>https://orcid.org/0000-0002-9474-6369</orcidid></search><sort><creationdate>20221101</creationdate><title>Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage</title><author>Zheng, Wei-Long ; Kim, Jennifer A. ; Elmer, Jonathan ; Zafar, Sahar F. ; Ghanta, Manohar ; Moura Junior, Valdery ; Patel, Aman ; Rosenthal, Eric ; Brandon Westover, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-976bc43db57ec4ef4551165763c74fe85c3660a3697cc8834c960a77eb7e74763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain Ischemia - complications</topic><topic>Brain Ischemia - etiology</topic><topic>Cerebral Infarction</topic><topic>Delayed cerebral ischemia</topic><topic>EEG</topic><topic>Electroencephalography - adverse effects</topic><topic>Epileptiform discharges</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Subarachnoid hemorrhage</topic><topic>Subarachnoid Hemorrhage - complications</topic><topic>Subarachnoid Hemorrhage - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wei-Long</creatorcontrib><creatorcontrib>Kim, Jennifer A.</creatorcontrib><creatorcontrib>Elmer, Jonathan</creatorcontrib><creatorcontrib>Zafar, Sahar F.</creatorcontrib><creatorcontrib>Ghanta, Manohar</creatorcontrib><creatorcontrib>Moura Junior, Valdery</creatorcontrib><creatorcontrib>Patel, Aman</creatorcontrib><creatorcontrib>Rosenthal, Eric</creatorcontrib><creatorcontrib>Brandon Westover, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wei-Long</au><au>Kim, Jennifer A.</au><au>Elmer, Jonathan</au><au>Zafar, Sahar F.</au><au>Ghanta, Manohar</au><au>Moura Junior, Valdery</au><au>Patel, Aman</au><au>Rosenthal, Eric</au><au>Brandon Westover, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage</atitle><jtitle>Clinical neurophysiology</jtitle><addtitle>Clin Neurophysiol</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>143</volume><spage>97</spage><epage>106</epage><pages>97-106</pages><issn>1388-2457</issn><eissn>1872-8952</eissn><abstract>•A number of EEG features have been shown to be predictive of delayed cerebral ischemia (DCI), but a continuous assessment of multidimensional EEG features is lacking.•Combining spectral and epileptiform discharge feature information, using automated calculations, allows for dynamic prediction of DCI.•This dynamic multi-feature assessment increases the feasibility of implementing interventions in response to our EEG derived DCI risk probability. Delayed cerebral ischemia (DCI) is a leading complication of aneurysmal subarachnoid hemorrhage (SAH) and electroencephalography (EEG) is increasingly used to evaluate DCI risk. Our goal is to develop an automated DCI prediction algorithm integrating multiple EEG features over time. We assess 113 moderate to severe grade SAH patients to develop a machine learning model that predicts DCI risk using multiple EEG features. Multiple EEG features discriminate between DCI and non-DCI patients when aligned either to SAH time or to DCI onset. DCI and non-DCI patients have significant differences in alpha-delta ratio (0.08 vs 0.05, p &lt; 0.05) and percent alpha variability (0.06 vs 0.04, p &lt; 0.05), Shannon entropy (p &lt; 0.05) and epileptiform discharge burden (205 vs 91 discharges per hour, p &lt; 0.05) based on whole brain and vascular territory averaging. Our model improves predictions by emphasizing the most informative features at a given time with an area under the receiver-operator curve of 0.73, by day 5 after SAH and good calibration between 48–72 hours (calibration error 0.13). Our proposed model obtains good performance in DCI prediction. We leverage machine learning to enable rapid, automated, multi-featured EEG assessment and has the potential to increase the utility of EEG for DCI prediction.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36182752</pmid><doi>10.1016/j.clinph.2022.08.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3072-6198</orcidid><orcidid>https://orcid.org/0000-0003-3900-356X</orcidid><orcidid>https://orcid.org/0000-0002-9474-6369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-2457
ispartof Clinical neurophysiology, 2022-11, Vol.143, p.97-106
issn 1388-2457
1872-8952
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9847346
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomarkers
Brain
Brain Ischemia - complications
Brain Ischemia - etiology
Cerebral Infarction
Delayed cerebral ischemia
EEG
Electroencephalography - adverse effects
Epileptiform discharges
Humans
Machine learning
Subarachnoid hemorrhage
Subarachnoid Hemorrhage - complications
Subarachnoid Hemorrhage - diagnosis
title Automated EEG-based prediction of delayed cerebral ischemia after subarachnoid hemorrhage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20EEG-based%20prediction%20of%20delayed%20cerebral%20ischemia%20after%20subarachnoid%20hemorrhage&rft.jtitle=Clinical%20neurophysiology&rft.au=Zheng,%20Wei-Long&rft.date=2022-11-01&rft.volume=143&rft.spage=97&rft.epage=106&rft.pages=97-106&rft.issn=1388-2457&rft.eissn=1872-8952&rft_id=info:doi/10.1016/j.clinph.2022.08.023&rft_dat=%3Cproquest_pubme%3E2720424290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720424290&rft_id=info:pmid/36182752&rft_els_id=S138824572200877X&rfr_iscdi=true