Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data

Abstract Background  Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective  The objective of this wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods of information in medicine 2022-09, Vol.61 (3/04), p.099-110
Hauptverfasser: Thomas, Brian L., Holder, Lawrence B., Cook, Diane J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 3/04
container_start_page 099
container_title Methods of information in medicine
container_volume 61
creator Thomas, Brian L.
Holder, Lawrence B.
Cook, Diane J.
description Abstract Background  Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective  The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods  We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results  We validate our approach using continuous smartwatch data for n  = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r  = 0.1230 to r  = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings.
doi_str_mv 10.1055/s-0042-1756649
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9847015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724238291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-35330ceb7e15d2e4a7253969b93190d543bb4b9dab722b9e60378c62883402533</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS0EotvClSPKkUvK-CuOL0ir5aOVKoFEi7hZTjLddZXEi8ep1P8eV7tUcOA0h_nNm6f3GHvD4ZyD1u-pBlCi5kY3jbLP2EpozmsD-udztgIQTc2FgRN2SnQHAG0L6iU7kY0QwDlfsR_rJcfJZxyqTdzOIYd7rC7Qj3lXrYmQaMI5VzcU5m31zacc_Dg-FHbaj5ixug4TVt8xBaQyZoqp-uizf8Ve3PqR8PVxnrGbz5-uNxf11dcvl5v1Vd3LVuZaaimhx84g14NA5Y3Q0ja2s5JbGLSSXac6O_jOCNFZbECatm9E20oFBZVn7MNBd790Ew598Zr86PYpTD49uOiD-3czh53bxntnW2WA6yLw7iiQ4q8FKbspUI_j6GeMCzlhhBKyFZYX9PyA9ikSJbx9esPBPZbhyD2W4Y5llIO3f5t7wv-kX4D6AORdwAndXVzSXOL6n-BvKbmS-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724238291</pqid></control><display><type>article</type><title>Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data</title><source>MEDLINE</source><source>Thieme Connect Journals</source><creator>Thomas, Brian L. ; Holder, Lawrence B. ; Cook, Diane J.</creator><creatorcontrib>Thomas, Brian L. ; Holder, Lawrence B. ; Cook, Diane J.</creatorcontrib><description>Abstract Background  Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective  The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods  We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results  We validate our approach using continuous smartwatch data for n  = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r  = 0.1230 to r  = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings.</description><identifier>ISSN: 0026-1270</identifier><identifier>ISSN: 2511-705X</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.1055/s-0042-1756649</identifier><identifier>PMID: 36220111</identifier><language>eng</language><publisher>Rüdigerstraße 14, 70469 Stuttgart, Germany: Georg Thieme Verlag KG</publisher><subject>Algorithms ; Cognition ; Data Collection ; Humans ; Machine Learning ; Original Article ; Time Factors</subject><ispartof>Methods of information in medicine, 2022-09, Vol.61 (3/04), p.099-110</ispartof><rights>Thieme. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-35330ceb7e15d2e4a7253969b93190d543bb4b9dab722b9e60378c62883402533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0042-1756649.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/s-0042-1756649$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>230,314,780,784,885,3008,3009,27915,27916,54550,54551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36220111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Brian L.</creatorcontrib><creatorcontrib>Holder, Lawrence B.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><title>Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Abstract Background  Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective  The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods  We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results  We validate our approach using continuous smartwatch data for n  = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r  = 0.1230 to r  = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings.</description><subject>Algorithms</subject><subject>Cognition</subject><subject>Data Collection</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Original Article</subject><subject>Time Factors</subject><issn>0026-1270</issn><issn>2511-705X</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS0EotvClSPKkUvK-CuOL0ir5aOVKoFEi7hZTjLddZXEi8ep1P8eV7tUcOA0h_nNm6f3GHvD4ZyD1u-pBlCi5kY3jbLP2EpozmsD-udztgIQTc2FgRN2SnQHAG0L6iU7kY0QwDlfsR_rJcfJZxyqTdzOIYd7rC7Qj3lXrYmQaMI5VzcU5m31zacc_Dg-FHbaj5ixug4TVt8xBaQyZoqp-uizf8Ve3PqR8PVxnrGbz5-uNxf11dcvl5v1Vd3LVuZaaimhx84g14NA5Y3Q0ja2s5JbGLSSXac6O_jOCNFZbECatm9E20oFBZVn7MNBd790Ew598Zr86PYpTD49uOiD-3czh53bxntnW2WA6yLw7iiQ4q8FKbspUI_j6GeMCzlhhBKyFZYX9PyA9ikSJbx9esPBPZbhyD2W4Y5llIO3f5t7wv-kX4D6AORdwAndXVzSXOL6n-BvKbmS-Q</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Thomas, Brian L.</creator><creator>Holder, Lawrence B.</creator><creator>Cook, Diane J.</creator><general>Georg Thieme Verlag KG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220901</creationdate><title>Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data</title><author>Thomas, Brian L. ; Holder, Lawrence B. ; Cook, Diane J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-35330ceb7e15d2e4a7253969b93190d543bb4b9dab722b9e60378c62883402533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cognition</topic><topic>Data Collection</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Original Article</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Brian L.</creatorcontrib><creatorcontrib>Holder, Lawrence B.</creatorcontrib><creatorcontrib>Cook, Diane J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Brian L.</au><au>Holder, Lawrence B.</au><au>Cook, Diane J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>61</volume><issue>3/04</issue><spage>099</spage><epage>110</epage><pages>099-110</pages><issn>0026-1270</issn><issn>2511-705X</issn><eissn>2511-705X</eissn><abstract>Abstract Background  Behavior and health are inextricably linked. As a result, continuous wearable sensor data offer the potential to predict clinical measures. However, interruptions in the data collection occur, which create a need for strategic data imputation. Objective  The objective of this work is to adapt a data generation algorithm to impute multivariate time series data. This will allow us to create digital behavior markers that can predict clinical health measures. Methods  We created a bidirectional time series generative adversarial network to impute missing sensor readings. Values are imputed based on relationships between multiple fields and multiple points in time, for single time points or larger time gaps. From the complete data, digital behavior markers are extracted and are mapped to predicted clinical measures. Results  We validate our approach using continuous smartwatch data for n  = 14 participants. When reconstructing omitted data, we observe an average normalized mean absolute error of 0.0197. We then create machine learning models to predict clinical measures from the reconstructed, complete data with correlations ranging from r  = 0.1230 to r  = 0.7623. This work indicates that wearable sensor data collected in the wild can be used to offer insights on a person's health in natural settings.</abstract><cop>Rüdigerstraße 14, 70469 Stuttgart, Germany</cop><pub>Georg Thieme Verlag KG</pub><pmid>36220111</pmid><doi>10.1055/s-0042-1756649</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-1270
ispartof Methods of information in medicine, 2022-09, Vol.61 (3/04), p.099-110
issn 0026-1270
2511-705X
2511-705X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9847015
source MEDLINE; Thieme Connect Journals
subjects Algorithms
Cognition
Data Collection
Humans
Machine Learning
Original Article
Time Factors
title Automated Cognitive Health Assessment Using Partially Complete Time Series Sensor Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Cognitive%20Health%20Assessment%20Using%20Partially%20Complete%20Time%20Series%20Sensor%20Data&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Thomas,%20Brian%20L.&rft.date=2022-09-01&rft.volume=61&rft.issue=3/04&rft.spage=099&rft.epage=110&rft.pages=099-110&rft.issn=0026-1270&rft.eissn=2511-705X&rft_id=info:doi/10.1055/s-0042-1756649&rft_dat=%3Cproquest_pubme%3E2724238291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724238291&rft_id=info:pmid/36220111&rfr_iscdi=true