Periodic inhibition of Erk activity drives sequential somite segmentation

Sequential segmentation creates modular body plans of diverse metazoan embryos 1 – 4 . Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation 4 . However, how cells are primed to form a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-01, Vol.613 (7942), p.153-159
Hauptverfasser: Simsek, M. Fethullah, Chandel, Angad Singh, Saparov, Didar, Zinani, Oriana Q. H., Clason, Nicholas, Özbudak, Ertuğrul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 7942
container_start_page 153
container_title Nature (London)
container_volume 613
creator Simsek, M. Fethullah
Chandel, Angad Singh
Saparov, Didar
Zinani, Oriana Q. H.
Clason, Nicholas
Özbudak, Ertuğrul M.
description Sequential segmentation creates modular body plans of diverse metazoan embryos 1 – 4 . Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation 4 . However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1–Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish 5 . Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species 3 , 4 , 6 – 8 . Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients. The zebrafish segmentation clock drives sequential segmentation of somites by periodically lowering double-phosphorylated Erk and therefore projecting its oscillation on the double-phosphorylated Erk gradient.
doi_str_mv 10.1038/s41586-022-05527-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9846577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762030187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-d2f2bd8359eb8ff38c2c99a4fea0808f2d742ae8d63a12bbe994f60ccb9cacc93</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnR6Pj4Ay5MEzduqpQ3GxMz8ZWY6ELXhFIY0bYodCb672WccXwsXEHu_e65HA4A-xU8riAWJ4lUVLASIlRCShEv39bAqCKclYQJvg5GECJRQoHZFthO6QlCSCtONsEWZvlCJR-B6zsbfWi8KXz_6Gs_-NAXwRXn8bnQZvAzP7wXTfQzm4pkX6e2H7xuixQ6P9hcmXS5oudTu2DD6TbZveW5Ax4uzu_HV-XN7eX1-OymNBThoWyQQ3UjMJW2Fs5hYZCRUhNnNRRQONRwgrQVDcO6QnVtpSSOQWNqabQxEu-A04Xuy7TubGPy_qhb9RJ9p-O7Ctqr353eP6pJmCkpCKOcZ4GjpUAM2VAaVOeTsW2rexumSSFOicgfy0RGD_-gT2Ea-2wvUwxBDCsxF0QLysSQUrRu9ZgKqnlSapGUykmpz6TUWx46-GljNfIVTQbwAki51U9s_N79j-wH9TCiGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762030187</pqid></control><display><type>article</type><title>Periodic inhibition of Erk activity drives sequential somite segmentation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Simsek, M. Fethullah ; Chandel, Angad Singh ; Saparov, Didar ; Zinani, Oriana Q. H. ; Clason, Nicholas ; Özbudak, Ertuğrul M.</creator><creatorcontrib>Simsek, M. Fethullah ; Chandel, Angad Singh ; Saparov, Didar ; Zinani, Oriana Q. H. ; Clason, Nicholas ; Özbudak, Ertuğrul M.</creatorcontrib><description>Sequential segmentation creates modular body plans of diverse metazoan embryos 1 – 4 . Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation 4 . However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1–Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish 5 . Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species 3 , 4 , 6 – 8 . Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients. The zebrafish segmentation clock drives sequential segmentation of somites by periodically lowering double-phosphorylated Erk and therefore projecting its oscillation on the double-phosphorylated Erk gradient.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05527-x</identifier><identifier>PMID: 36517597</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/1 ; 14/19 ; 14/32 ; 14/35 ; 631/136/756/1640 ; 631/553/2693 ; 64 ; 64/116 ; 82 ; 82/51 ; Animals ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological Clocks ; Body Patterning ; Clocks ; Clocks &amp; watches ; Divergence ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - antagonists &amp; inhibitors ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene Expression Regulation, Developmental ; Humanities and Social Sciences ; Kinases ; Kinematics ; Mesoderm ; multidisciplinary ; Periodicity ; Phosphorylation ; Science ; Science (multidisciplinary) ; Segmentation ; Somites - drug effects ; Somites - embryology ; Somites - enzymology ; Somites - metabolism ; Somitogenesis ; Species diversity ; Vertebrates ; Zebrafish ; Zebrafish - embryology ; Zebrafish - metabolism ; Zebrafish Proteins - antagonists &amp; inhibitors ; Zebrafish Proteins - metabolism</subject><ispartof>Nature (London), 2023-01, Vol.613 (7942), p.153-159</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 5, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-d2f2bd8359eb8ff38c2c99a4fea0808f2d742ae8d63a12bbe994f60ccb9cacc93</citedby><cites>FETCH-LOGICAL-c523t-d2f2bd8359eb8ff38c2c99a4fea0808f2d742ae8d63a12bbe994f60ccb9cacc93</cites><orcidid>0000-0002-5873-0714 ; 0000-0001-7572-0502 ; 0000-0002-7105-1249 ; 0000-0003-2858-4696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05527-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05527-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36517597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simsek, M. Fethullah</creatorcontrib><creatorcontrib>Chandel, Angad Singh</creatorcontrib><creatorcontrib>Saparov, Didar</creatorcontrib><creatorcontrib>Zinani, Oriana Q. H.</creatorcontrib><creatorcontrib>Clason, Nicholas</creatorcontrib><creatorcontrib>Özbudak, Ertuğrul M.</creatorcontrib><title>Periodic inhibition of Erk activity drives sequential somite segmentation</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Sequential segmentation creates modular body plans of diverse metazoan embryos 1 – 4 . Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation 4 . However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1–Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish 5 . Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species 3 , 4 , 6 – 8 . Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients. The zebrafish segmentation clock drives sequential segmentation of somites by periodically lowering double-phosphorylated Erk and therefore projecting its oscillation on the double-phosphorylated Erk gradient.</description><subject>14</subject><subject>14/1</subject><subject>14/19</subject><subject>14/32</subject><subject>14/35</subject><subject>631/136/756/1640</subject><subject>631/553/2693</subject><subject>64</subject><subject>64/116</subject><subject>82</subject><subject>82/51</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological Clocks</subject><subject>Body Patterning</subject><subject>Clocks</subject><subject>Clocks &amp; watches</subject><subject>Divergence</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - antagonists &amp; inhibitors</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Kinematics</subject><subject>Mesoderm</subject><subject>multidisciplinary</subject><subject>Periodicity</subject><subject>Phosphorylation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Segmentation</subject><subject>Somites - drug effects</subject><subject>Somites - embryology</subject><subject>Somites - enzymology</subject><subject>Somites - metabolism</subject><subject>Somitogenesis</subject><subject>Species diversity</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - metabolism</subject><subject>Zebrafish Proteins - antagonists &amp; inhibitors</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtPxCAUhYnR6Pj4Ay5MEzduqpQ3GxMz8ZWY6ELXhFIY0bYodCb672WccXwsXEHu_e65HA4A-xU8riAWJ4lUVLASIlRCShEv39bAqCKclYQJvg5GECJRQoHZFthO6QlCSCtONsEWZvlCJR-B6zsbfWi8KXz_6Gs_-NAXwRXn8bnQZvAzP7wXTfQzm4pkX6e2H7xuixQ6P9hcmXS5oudTu2DD6TbZveW5Ax4uzu_HV-XN7eX1-OymNBThoWyQQ3UjMJW2Fs5hYZCRUhNnNRRQONRwgrQVDcO6QnVtpSSOQWNqabQxEu-A04Xuy7TubGPy_qhb9RJ9p-O7Ctqr353eP6pJmCkpCKOcZ4GjpUAM2VAaVOeTsW2rexumSSFOicgfy0RGD_-gT2Ea-2wvUwxBDCsxF0QLysSQUrRu9ZgKqnlSapGUykmpz6TUWx46-GljNfIVTQbwAki51U9s_N79j-wH9TCiGA</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Simsek, M. Fethullah</creator><creator>Chandel, Angad Singh</creator><creator>Saparov, Didar</creator><creator>Zinani, Oriana Q. H.</creator><creator>Clason, Nicholas</creator><creator>Özbudak, Ertuğrul M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5873-0714</orcidid><orcidid>https://orcid.org/0000-0001-7572-0502</orcidid><orcidid>https://orcid.org/0000-0002-7105-1249</orcidid><orcidid>https://orcid.org/0000-0003-2858-4696</orcidid></search><sort><creationdate>20230105</creationdate><title>Periodic inhibition of Erk activity drives sequential somite segmentation</title><author>Simsek, M. Fethullah ; Chandel, Angad Singh ; Saparov, Didar ; Zinani, Oriana Q. H. ; Clason, Nicholas ; Özbudak, Ertuğrul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-d2f2bd8359eb8ff38c2c99a4fea0808f2d742ae8d63a12bbe994f60ccb9cacc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14</topic><topic>14/1</topic><topic>14/19</topic><topic>14/32</topic><topic>14/35</topic><topic>631/136/756/1640</topic><topic>631/553/2693</topic><topic>64</topic><topic>64/116</topic><topic>82</topic><topic>82/51</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological Clocks</topic><topic>Body Patterning</topic><topic>Clocks</topic><topic>Clocks &amp; watches</topic><topic>Divergence</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - antagonists &amp; inhibitors</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Kinematics</topic><topic>Mesoderm</topic><topic>multidisciplinary</topic><topic>Periodicity</topic><topic>Phosphorylation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Segmentation</topic><topic>Somites - drug effects</topic><topic>Somites - embryology</topic><topic>Somites - enzymology</topic><topic>Somites - metabolism</topic><topic>Somitogenesis</topic><topic>Species diversity</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - metabolism</topic><topic>Zebrafish Proteins - antagonists &amp; inhibitors</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simsek, M. Fethullah</creatorcontrib><creatorcontrib>Chandel, Angad Singh</creatorcontrib><creatorcontrib>Saparov, Didar</creatorcontrib><creatorcontrib>Zinani, Oriana Q. H.</creatorcontrib><creatorcontrib>Clason, Nicholas</creatorcontrib><creatorcontrib>Özbudak, Ertuğrul M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simsek, M. Fethullah</au><au>Chandel, Angad Singh</au><au>Saparov, Didar</au><au>Zinani, Oriana Q. H.</au><au>Clason, Nicholas</au><au>Özbudak, Ertuğrul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic inhibition of Erk activity drives sequential somite segmentation</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>613</volume><issue>7942</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Sequential segmentation creates modular body plans of diverse metazoan embryos 1 – 4 . Somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the presomitic mesoderm sets the pace of somite formation 4 . However, how cells are primed to form a segment boundary at a specific location remains unclear. Here we developed precise reporters for the clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. We show that the Her1–Her7 oscillator drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. Pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock, and kinematic clock waves are dispensable for sequential segmentation. The clock functions upstream of ppErk, which in turn enables neighbouring cells to discretely establish somite boundaries in zebrafish 5 . Molecularly divergent clocks and morphogen gradients were identified in sequentially segmenting species 3 , 4 , 6 – 8 . Our findings imply that versatile clocks may establish sequential segmentation in diverse species provided that they inhibit gradients. The zebrafish segmentation clock drives sequential segmentation of somites by periodically lowering double-phosphorylated Erk and therefore projecting its oscillation on the double-phosphorylated Erk gradient.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36517597</pmid><doi>10.1038/s41586-022-05527-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5873-0714</orcidid><orcidid>https://orcid.org/0000-0001-7572-0502</orcidid><orcidid>https://orcid.org/0000-0002-7105-1249</orcidid><orcidid>https://orcid.org/0000-0003-2858-4696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-01, Vol.613 (7942), p.153-159
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9846577
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14
14/1
14/19
14/32
14/35
631/136/756/1640
631/553/2693
64
64/116
82
82/51
Animals
Basic Helix-Loop-Helix Transcription Factors - metabolism
Biological Clocks
Body Patterning
Clocks
Clocks & watches
Divergence
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - antagonists & inhibitors
Extracellular Signal-Regulated MAP Kinases - metabolism
Gene Expression Regulation, Developmental
Humanities and Social Sciences
Kinases
Kinematics
Mesoderm
multidisciplinary
Periodicity
Phosphorylation
Science
Science (multidisciplinary)
Segmentation
Somites - drug effects
Somites - embryology
Somites - enzymology
Somites - metabolism
Somitogenesis
Species diversity
Vertebrates
Zebrafish
Zebrafish - embryology
Zebrafish - metabolism
Zebrafish Proteins - antagonists & inhibitors
Zebrafish Proteins - metabolism
title Periodic inhibition of Erk activity drives sequential somite segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20inhibition%20of%20Erk%20activity%20drives%20sequential%20somite%20segmentation&rft.jtitle=Nature%20(London)&rft.au=Simsek,%20M.%20Fethullah&rft.date=2023-01-05&rft.volume=613&rft.issue=7942&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05527-x&rft_dat=%3Cproquest_pubme%3E2762030187%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762030187&rft_id=info:pmid/36517597&rfr_iscdi=true