Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules
Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-eq...
Gespeichert in:
Veröffentlicht in: | Biophysical reviews 2022-12, Vol.14 (6), p.1303-1314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1314 |
---|---|
container_issue | 6 |
container_start_page | 1303 |
container_title | Biophysical reviews |
container_volume | 14 |
creator | Iida, Shinji Tomoshi, Kameda |
description | Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation. |
doi_str_mv | 10.1007/s12551-022-01036-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766095386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSNERUvhD7BAlth0E_AjfrFAqioKSJW6adeW7UwuLo59ayeV-u-bSy6Xx4KVbc13zsz4NM0bgt8TjOWHSijnpMWUtphgJlr2rDkhSsiWdkI_P9w5Pm5e1nqHseio4i-aYyYE11rLkyZdFgAECcrmEdnUox8hwRQ8KnYC5G30c7RTyAk9BItSTi3czyEGV8I8ojFH2AEF1TDuwY_Ibrcx-FU1ZeRC3nNQXzVHg40VXu_P0-b28vPNxdf26vrLt4vzq9Z3WkytcJxj3FlqGe21770ehO81Aaw66ZQUvXKOOAtDj4H0kkquqFjeriNMuYGdNp9W3-3sRug9pKnYaLYljLY8mmyD-buSwnezyQ9Gq-WLOrEYnO0NSr6foU5mDNVDjDZBnquhUijKmJRyQd_9g97luaRlvR0lsOZM7QzpSvmSay0wHIYh2OziNGucZonT_IzTsEX09s81DpJf-S0AW4G6lNIGyu_e_7F9At7qros</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766095386</pqid></control><display><type>article</type><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iida, Shinji ; Tomoshi, Kameda</creator><creatorcontrib>Iida, Shinji ; Tomoshi, Kameda</creatorcontrib><description>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</description><identifier>ISSN: 1867-2450</identifier><identifier>EISSN: 1867-2469</identifier><identifier>DOI: 10.1007/s12551-022-01036-3</identifier><identifier>PMID: 36659997</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biological Techniques ; Biomedical and Life Sciences ; Biomolecules ; Biophysics ; Cell Biology ; Free energy ; Life Sciences ; Mathematical analysis ; Membrane Biology ; Molecular dynamics ; Nanotechnology ; Rate theory ; Reaction time ; Review ; Simulation ; Statistical mechanics ; Theorems ; Trajectory analysis</subject><ispartof>Biophysical reviews, 2022-12, Vol.14 (6), p.1303-1314</ispartof><rights>International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</citedby><cites>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</cites><orcidid>0000-0001-9508-5366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842846/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842846/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36659997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iida, Shinji</creatorcontrib><creatorcontrib>Tomoshi, Kameda</creatorcontrib><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><title>Biophysical reviews</title><addtitle>Biophys Rev</addtitle><addtitle>Biophys Rev</addtitle><description>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomolecules</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Free energy</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Membrane Biology</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Rate theory</subject><subject>Reaction time</subject><subject>Review</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><subject>Theorems</subject><subject>Trajectory analysis</subject><issn>1867-2450</issn><issn>1867-2469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSNERUvhD7BAlth0E_AjfrFAqioKSJW6adeW7UwuLo59ayeV-u-bSy6Xx4KVbc13zsz4NM0bgt8TjOWHSijnpMWUtphgJlr2rDkhSsiWdkI_P9w5Pm5e1nqHseio4i-aYyYE11rLkyZdFgAECcrmEdnUox8hwRQ8KnYC5G30c7RTyAk9BItSTi3czyEGV8I8ojFH2AEF1TDuwY_Ibrcx-FU1ZeRC3nNQXzVHg40VXu_P0-b28vPNxdf26vrLt4vzq9Z3WkytcJxj3FlqGe21770ehO81Aaw66ZQUvXKOOAtDj4H0kkquqFjeriNMuYGdNp9W3-3sRug9pKnYaLYljLY8mmyD-buSwnezyQ9Gq-WLOrEYnO0NSr6foU5mDNVDjDZBnquhUijKmJRyQd_9g97luaRlvR0lsOZM7QzpSvmSay0wHIYh2OziNGucZonT_IzTsEX09s81DpJf-S0AW4G6lNIGyu_e_7F9At7qros</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Iida, Shinji</creator><creator>Tomoshi, Kameda</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9508-5366</orcidid></search><sort><creationdate>20221201</creationdate><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><author>Iida, Shinji ; Tomoshi, Kameda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomolecules</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Free energy</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Membrane Biology</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Rate theory</topic><topic>Reaction time</topic><topic>Review</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><topic>Theorems</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iida, Shinji</creatorcontrib><creatorcontrib>Tomoshi, Kameda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iida, Shinji</au><au>Tomoshi, Kameda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</atitle><jtitle>Biophysical reviews</jtitle><stitle>Biophys Rev</stitle><addtitle>Biophys Rev</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1303</spage><epage>1314</epage><pages>1303-1314</pages><issn>1867-2450</issn><eissn>1867-2469</eissn><abstract>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36659997</pmid><doi>10.1007/s12551-022-01036-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9508-5366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-2450 |
ispartof | Biophysical reviews, 2022-12, Vol.14 (6), p.1303-1314 |
issn | 1867-2450 1867-2469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842846 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biological Techniques Biomedical and Life Sciences Biomolecules Biophysics Cell Biology Free energy Life Sciences Mathematical analysis Membrane Biology Molecular dynamics Nanotechnology Rate theory Reaction time Review Simulation Statistical mechanics Theorems Trajectory analysis |
title | Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20energy%20and%20kinetic%20rate%20calculation%20via%20non-equilibrium%20molecular%20simulation:%20application%20to%20biomolecules&rft.jtitle=Biophysical%20reviews&rft.au=Iida,%20Shinji&rft.date=2022-12-01&rft.volume=14&rft.issue=6&rft.spage=1303&rft.epage=1314&rft.pages=1303-1314&rft.issn=1867-2450&rft.eissn=1867-2469&rft_id=info:doi/10.1007/s12551-022-01036-3&rft_dat=%3Cproquest_pubme%3E2766095386%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766095386&rft_id=info:pmid/36659997&rfr_iscdi=true |