Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules

Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical reviews 2022-12, Vol.14 (6), p.1303-1314
Hauptverfasser: Iida, Shinji, Tomoshi, Kameda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 6
container_start_page 1303
container_title Biophysical reviews
container_volume 14
creator Iida, Shinji
Tomoshi, Kameda
description Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.
doi_str_mv 10.1007/s12551-022-01036-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766095386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSNERUvhD7BAlth0E_AjfrFAqioKSJW6adeW7UwuLo59ayeV-u-bSy6Xx4KVbc13zsz4NM0bgt8TjOWHSijnpMWUtphgJlr2rDkhSsiWdkI_P9w5Pm5e1nqHseio4i-aYyYE11rLkyZdFgAECcrmEdnUox8hwRQ8KnYC5G30c7RTyAk9BItSTi3czyEGV8I8ojFH2AEF1TDuwY_Ibrcx-FU1ZeRC3nNQXzVHg40VXu_P0-b28vPNxdf26vrLt4vzq9Z3WkytcJxj3FlqGe21770ehO81Aaw66ZQUvXKOOAtDj4H0kkquqFjeriNMuYGdNp9W3-3sRug9pKnYaLYljLY8mmyD-buSwnezyQ9Gq-WLOrEYnO0NSr6foU5mDNVDjDZBnquhUijKmJRyQd_9g97luaRlvR0lsOZM7QzpSvmSay0wHIYh2OziNGucZonT_IzTsEX09s81DpJf-S0AW4G6lNIGyu_e_7F9At7qros</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766095386</pqid></control><display><type>article</type><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iida, Shinji ; Tomoshi, Kameda</creator><creatorcontrib>Iida, Shinji ; Tomoshi, Kameda</creatorcontrib><description>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</description><identifier>ISSN: 1867-2450</identifier><identifier>EISSN: 1867-2469</identifier><identifier>DOI: 10.1007/s12551-022-01036-3</identifier><identifier>PMID: 36659997</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biological Techniques ; Biomedical and Life Sciences ; Biomolecules ; Biophysics ; Cell Biology ; Free energy ; Life Sciences ; Mathematical analysis ; Membrane Biology ; Molecular dynamics ; Nanotechnology ; Rate theory ; Reaction time ; Review ; Simulation ; Statistical mechanics ; Theorems ; Trajectory analysis</subject><ispartof>Biophysical reviews, 2022-12, Vol.14 (6), p.1303-1314</ispartof><rights>International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</citedby><cites>FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</cites><orcidid>0000-0001-9508-5366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842846/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842846/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36659997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iida, Shinji</creatorcontrib><creatorcontrib>Tomoshi, Kameda</creatorcontrib><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><title>Biophysical reviews</title><addtitle>Biophys Rev</addtitle><addtitle>Biophys Rev</addtitle><description>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomolecules</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Free energy</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Membrane Biology</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Rate theory</subject><subject>Reaction time</subject><subject>Review</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><subject>Theorems</subject><subject>Trajectory analysis</subject><issn>1867-2450</issn><issn>1867-2469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSNERUvhD7BAlth0E_AjfrFAqioKSJW6adeW7UwuLo59ayeV-u-bSy6Xx4KVbc13zsz4NM0bgt8TjOWHSijnpMWUtphgJlr2rDkhSsiWdkI_P9w5Pm5e1nqHseio4i-aYyYE11rLkyZdFgAECcrmEdnUox8hwRQ8KnYC5G30c7RTyAk9BItSTi3czyEGV8I8ojFH2AEF1TDuwY_Ibrcx-FU1ZeRC3nNQXzVHg40VXu_P0-b28vPNxdf26vrLt4vzq9Z3WkytcJxj3FlqGe21770ehO81Aaw66ZQUvXKOOAtDj4H0kkquqFjeriNMuYGdNp9W3-3sRug9pKnYaLYljLY8mmyD-buSwnezyQ9Gq-WLOrEYnO0NSr6foU5mDNVDjDZBnquhUijKmJRyQd_9g97luaRlvR0lsOZM7QzpSvmSay0wHIYh2OziNGucZonT_IzTsEX09s81DpJf-S0AW4G6lNIGyu_e_7F9At7qros</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Iida, Shinji</creator><creator>Tomoshi, Kameda</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9508-5366</orcidid></search><sort><creationdate>20221201</creationdate><title>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</title><author>Iida, Shinji ; Tomoshi, Kameda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6b55004a2a32d9cdc9f6cd91e0847b876d8bb1baefd0e1d7275826baeb4138bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomolecules</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Free energy</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Membrane Biology</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Rate theory</topic><topic>Reaction time</topic><topic>Review</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><topic>Theorems</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iida, Shinji</creatorcontrib><creatorcontrib>Tomoshi, Kameda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iida, Shinji</au><au>Tomoshi, Kameda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules</atitle><jtitle>Biophysical reviews</jtitle><stitle>Biophys Rev</stitle><addtitle>Biophys Rev</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>1303</spage><epage>1314</epage><pages>1303-1314</pages><issn>1867-2450</issn><eissn>1867-2469</eissn><abstract>Non-equilibrium molecular dynamics (NEMD) simulation has been recognized as a powerful tool for examining biomolecules and provides fruitful insights into not only non-equilibrium but also equilibrium processes. We review recent advances in NEMD simulation and relevant, fundamental results of non-equilibrium statistical mechanics. We first introduce Crooks fluctuation theorem and Jarzynski equality that relate free energy difference to work done on a physical system during a non-equilibrium process. The theorems are beneficial for the analysis of NEMD trajectories. We then describe rate theory, a framework to calculate molecular kinetics from a non-equilibrium process; this theoretical framework enables us to calculate a reaction time—mean-first passage time—from NEMD trajectories. We, in turn, present recent NEMD techniques that apply an external force to a system to enhance molecular dissociation and introduce their application to biomolecules. Lastly, we show the current status of an appropriate selection of reaction coordinates for NEMD simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36659997</pmid><doi>10.1007/s12551-022-01036-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9508-5366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-2450
ispartof Biophysical reviews, 2022-12, Vol.14 (6), p.1303-1314
issn 1867-2450
1867-2469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842846
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biological Techniques
Biomedical and Life Sciences
Biomolecules
Biophysics
Cell Biology
Free energy
Life Sciences
Mathematical analysis
Membrane Biology
Molecular dynamics
Nanotechnology
Rate theory
Reaction time
Review
Simulation
Statistical mechanics
Theorems
Trajectory analysis
title Free energy and kinetic rate calculation via non-equilibrium molecular simulation: application to biomolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20energy%20and%20kinetic%20rate%20calculation%20via%20non-equilibrium%20molecular%20simulation:%20application%20to%20biomolecules&rft.jtitle=Biophysical%20reviews&rft.au=Iida,%20Shinji&rft.date=2022-12-01&rft.volume=14&rft.issue=6&rft.spage=1303&rft.epage=1314&rft.pages=1303-1314&rft.issn=1867-2450&rft.eissn=1867-2469&rft_id=info:doi/10.1007/s12551-022-01036-3&rft_dat=%3Cproquest_pubme%3E2766095386%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766095386&rft_id=info:pmid/36659997&rfr_iscdi=true