Route to extreme events in a parametrically driven position-dependent nonlinear oscillator
We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurren...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-01, Vol.138 (1), p.36-36, Article 36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Kaviya, B. Gopal, R. Suresh, R. Chandrasekar, V. K. |
description | We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height. |
doi_str_mv | 10.1140/epjp/s13360-022-03625-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919982274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxQdRbKn9Chpw42ba_J9kI0hRKxQE0Y2bkEnu1DxmkjHJFPvtzfPVWt2YTQL3l8M593TdC4LPCOH4HNbdel4IYxL3mNIeM0lFzx51x5Ro3AvO-eMH76PutJQdbodrwjV_2h0xKZXkejjuvn5KWwVUE4IfNcMCCG4g1oJCRBatNtsFag7OzvMt8jm0IVpTCTWk2HtYIfqGo5jiHCLYjFJxYZ5tTflZ92Syc4HTu_uk-_Lu7eeLy_7q4_sPF2-uescpr70dOfOUEOxgpFyB5FziaZwcEeDw4MkkGRdSWEGUcNqNfrJeDJ5iKScpGTvpXh90121cwLvmJ9vZrDksNt-aZIP5exLDN3OdboxWnAqMm8CrO4Gcvm9QqllCcdBSREhbMXSQSrV1c9XQl_-gu7Tl2OIZqonWitKBN2o4UC6nUjJM92YINvsKzb5Cc6jQtArNrwrNPsvzh1nu__0urAHqAJQ2iteQ_xj4n_ZPJMutEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919982274</pqid></control><display><type>article</type><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</creator><creatorcontrib>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</creatorcontrib><description>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03625-3</identifier><identifier>PMID: 36686497</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Bifurcations ; Complex Systems ; Condensed Matter Physics ; Damping ; Dynamical systems ; Liapunov exponents ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Oscillations ; Oscillators ; Physics ; Physics and Astronomy ; Regular ; Regular Article ; Spectrum analysis ; Theoretical</subject><ispartof>European physical journal plus, 2023-01, Vol.138 (1), p.36-36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</citedby><cites>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</cites><orcidid>0000-0002-1415-2473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03625-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919982274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36686497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaviya, B.</creatorcontrib><creatorcontrib>Gopal, R.</creatorcontrib><creatorcontrib>Suresh, R.</creatorcontrib><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><addtitle>Eur Phys J Plus</addtitle><description>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bifurcations</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Damping</subject><subject>Dynamical systems</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Regular Article</subject><subject>Spectrum analysis</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxQdRbKn9Chpw42ba_J9kI0hRKxQE0Y2bkEnu1DxmkjHJFPvtzfPVWt2YTQL3l8M593TdC4LPCOH4HNbdel4IYxL3mNIeM0lFzx51x5Ro3AvO-eMH76PutJQdbodrwjV_2h0xKZXkejjuvn5KWwVUE4IfNcMCCG4g1oJCRBatNtsFag7OzvMt8jm0IVpTCTWk2HtYIfqGo5jiHCLYjFJxYZ5tTflZ92Syc4HTu_uk-_Lu7eeLy_7q4_sPF2-uescpr70dOfOUEOxgpFyB5FziaZwcEeDw4MkkGRdSWEGUcNqNfrJeDJ5iKScpGTvpXh90121cwLvmJ9vZrDksNt-aZIP5exLDN3OdboxWnAqMm8CrO4Gcvm9QqllCcdBSREhbMXSQSrV1c9XQl_-gu7Tl2OIZqonWitKBN2o4UC6nUjJM92YINvsKzb5Cc6jQtArNrwrNPsvzh1nu__0urAHqAJQ2iteQ_xj4n_ZPJMutEA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kaviya, B.</creator><creator>Gopal, R.</creator><creator>Suresh, R.</creator><creator>Chandrasekar, V. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1415-2473</orcidid></search><sort><creationdate>20230101</creationdate><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><author>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bifurcations</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Damping</topic><topic>Dynamical systems</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Regular Article</topic><topic>Spectrum analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaviya, B.</creatorcontrib><creatorcontrib>Gopal, R.</creatorcontrib><creatorcontrib>Suresh, R.</creatorcontrib><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaviya, B.</au><au>Gopal, R.</au><au>Suresh, R.</au><au>Chandrasekar, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><addtitle>Eur Phys J Plus</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>36</spage><epage>36</epage><pages>36-36</pages><artnum>36</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36686497</pmid><doi>10.1140/epjp/s13360-022-03625-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1415-2473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-01, Vol.138 (1), p.36-36, Article 36 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842500 |
source | SpringerLink Journals; ProQuest Central |
subjects | Applied and Technical Physics Atomic Bifurcations Complex Systems Condensed Matter Physics Damping Dynamical systems Liapunov exponents Mathematical and Computational Physics Molecular Optical and Plasma Physics Oscillations Oscillators Physics Physics and Astronomy Regular Regular Article Spectrum analysis Theoretical |
title | Route to extreme events in a parametrically driven position-dependent nonlinear oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Route%20to%20extreme%20events%20in%20a%20parametrically%20driven%20position-dependent%20nonlinear%20oscillator&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kaviya,%20B.&rft.date=2023-01-01&rft.volume=138&rft.issue=1&rft.spage=36&rft.epage=36&rft.pages=36-36&rft.artnum=36&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03625-3&rft_dat=%3Cproquest_pubme%3E2919982274%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919982274&rft_id=info:pmid/36686497&rfr_iscdi=true |