Route to extreme events in a parametrically driven position-dependent nonlinear oscillator

We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-01, Vol.138 (1), p.36-36, Article 36
Hauptverfasser: Kaviya, B., Gopal, R., Suresh, R., Chandrasekar, V. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 36
container_title European physical journal plus
container_volume 138
creator Kaviya, B.
Gopal, R.
Suresh, R.
Chandrasekar, V. K.
description We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.
doi_str_mv 10.1140/epjp/s13360-022-03625-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919982274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxQdRbKn9Chpw42ba_J9kI0hRKxQE0Y2bkEnu1DxmkjHJFPvtzfPVWt2YTQL3l8M593TdC4LPCOH4HNbdel4IYxL3mNIeM0lFzx51x5Ro3AvO-eMH76PutJQdbodrwjV_2h0xKZXkejjuvn5KWwVUE4IfNcMCCG4g1oJCRBatNtsFag7OzvMt8jm0IVpTCTWk2HtYIfqGo5jiHCLYjFJxYZ5tTflZ92Syc4HTu_uk-_Lu7eeLy_7q4_sPF2-uescpr70dOfOUEOxgpFyB5FziaZwcEeDw4MkkGRdSWEGUcNqNfrJeDJ5iKScpGTvpXh90121cwLvmJ9vZrDksNt-aZIP5exLDN3OdboxWnAqMm8CrO4Gcvm9QqllCcdBSREhbMXSQSrV1c9XQl_-gu7Tl2OIZqonWitKBN2o4UC6nUjJM92YINvsKzb5Cc6jQtArNrwrNPsvzh1nu__0urAHqAJQ2iteQ_xj4n_ZPJMutEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919982274</pqid></control><display><type>article</type><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><source>SpringerLink Journals</source><source>ProQuest Central</source><creator>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</creator><creatorcontrib>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</creatorcontrib><description>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03625-3</identifier><identifier>PMID: 36686497</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Bifurcations ; Complex Systems ; Condensed Matter Physics ; Damping ; Dynamical systems ; Liapunov exponents ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Oscillations ; Oscillators ; Physics ; Physics and Astronomy ; Regular ; Regular Article ; Spectrum analysis ; Theoretical</subject><ispartof>European physical journal plus, 2023-01, Vol.138 (1), p.36-36, Article 36</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</citedby><cites>FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</cites><orcidid>0000-0002-1415-2473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03625-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919982274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36686497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaviya, B.</creatorcontrib><creatorcontrib>Gopal, R.</creatorcontrib><creatorcontrib>Suresh, R.</creatorcontrib><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><addtitle>Eur Phys J Plus</addtitle><description>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Bifurcations</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Damping</subject><subject>Dynamical systems</subject><subject>Liapunov exponents</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular</subject><subject>Regular Article</subject><subject>Spectrum analysis</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9rFTEUxQdRbKn9Chpw42ba_J9kI0hRKxQE0Y2bkEnu1DxmkjHJFPvtzfPVWt2YTQL3l8M593TdC4LPCOH4HNbdel4IYxL3mNIeM0lFzx51x5Ro3AvO-eMH76PutJQdbodrwjV_2h0xKZXkejjuvn5KWwVUE4IfNcMCCG4g1oJCRBatNtsFag7OzvMt8jm0IVpTCTWk2HtYIfqGo5jiHCLYjFJxYZ5tTflZ92Syc4HTu_uk-_Lu7eeLy_7q4_sPF2-uescpr70dOfOUEOxgpFyB5FziaZwcEeDw4MkkGRdSWEGUcNqNfrJeDJ5iKScpGTvpXh90121cwLvmJ9vZrDksNt-aZIP5exLDN3OdboxWnAqMm8CrO4Gcvm9QqllCcdBSREhbMXSQSrV1c9XQl_-gu7Tl2OIZqonWitKBN2o4UC6nUjJM92YINvsKzb5Cc6jQtArNrwrNPsvzh1nu__0urAHqAJQ2iteQ_xj4n_ZPJMutEA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kaviya, B.</creator><creator>Gopal, R.</creator><creator>Suresh, R.</creator><creator>Chandrasekar, V. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1415-2473</orcidid></search><sort><creationdate>20230101</creationdate><title>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</title><author>Kaviya, B. ; Gopal, R. ; Suresh, R. ; Chandrasekar, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ab43d2110ceb248e64460fbfc15ec07d1f634565a5185c9cbdfad57d2066f6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Bifurcations</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Damping</topic><topic>Dynamical systems</topic><topic>Liapunov exponents</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular</topic><topic>Regular Article</topic><topic>Spectrum analysis</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaviya, B.</creatorcontrib><creatorcontrib>Gopal, R.</creatorcontrib><creatorcontrib>Suresh, R.</creatorcontrib><creatorcontrib>Chandrasekar, V. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaviya, B.</au><au>Gopal, R.</au><au>Suresh, R.</au><au>Chandrasekar, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Route to extreme events in a parametrically driven position-dependent nonlinear oscillator</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><addtitle>Eur Phys J Plus</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>36</spage><epage>36</epage><pages>36-36</pages><artnum>36</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We explore the dynamics of a damped and driven Mathews–Lakshmanan oscillator type model with position-dependent mass term and report two distinct bifurcation routes to the advent of sudden, intermittent large-amplitude chaotic oscillations in the system. We characterize these infrequent and recurrent large oscillations as extreme events (EE) when they are significantly greater than the pre-defined threshold height. In the first bifurcation route, the system exhibits a bifurcation from quasiperiodic (QP) attractor to chaotic attractor via strange non-chaotic (SNA) attractor as a function of damping parameter. In the second route, the chaotic attractor in the form of EE has emerged directly from the QP attractor. Hence, to the best of our knowledge, this is the first study to report the birth of EE from these two distinct bifurcation routes. We also discuss that EE are emerged due to the sudden expansion of the chaotic attractor via interior crisis in the system. Regions of different dynamical states are distinguished using the Lyapunov exponent spectrum. Further, SNA and QP dynamics are determined using the singular spectrum analysis and 0–1 test. The region of EE is characterized using the threshold height.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36686497</pmid><doi>10.1140/epjp/s13360-022-03625-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1415-2473</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-01, Vol.138 (1), p.36-36, Article 36
issn 2190-5444
2190-5444
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842500
source SpringerLink Journals; ProQuest Central
subjects Applied and Technical Physics
Atomic
Bifurcations
Complex Systems
Condensed Matter Physics
Damping
Dynamical systems
Liapunov exponents
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Oscillations
Oscillators
Physics
Physics and Astronomy
Regular
Regular Article
Spectrum analysis
Theoretical
title Route to extreme events in a parametrically driven position-dependent nonlinear oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Route%20to%20extreme%20events%20in%20a%20parametrically%20driven%20position-dependent%20nonlinear%20oscillator&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kaviya,%20B.&rft.date=2023-01-01&rft.volume=138&rft.issue=1&rft.spage=36&rft.epage=36&rft.pages=36-36&rft.artnum=36&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03625-3&rft_dat=%3Cproquest_pubme%3E2919982274%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919982274&rft_id=info:pmid/36686497&rfr_iscdi=true