A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis
Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradi...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-01, Vol.17 (1), p.197-211 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 1 |
container_start_page | 197 |
container_title | ACS nano |
container_volume | 17 |
creator | Hakeem, Reem M. Subramanian, Bhagawat C. Hockenberry, Max A. King, Zayna T. Butler, Mitchell T. Legant, Wesley R. Bear, James E. |
description | Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients. |
doi_str_mv | 10.1021/acsnano.2c05941 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763334337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw5oZ8REJp7Thx7AvS0tIWqQhUQOJmOc6k6yqxtx6nEJ6Bh8ZolxUcONmyv_lmNH9RPGf0mNGKnRiL3vhwXFnaqJo9KA6Z4qKkUnx9uL837KB4gnhLadPKVjwuDrio20ZwdVj8XJGP65DCJozLBNH9gJ5cLn0MNzCSTwsmmMg3l9bkbDb5Iblh8IBILqLpHfiE5BruwYxIzhwm520iK5vCtAR0vnxjMPveg13nIctrwE3wCEicJ-eui6EbDaasjiGZ7w6fFo-GrIJnu_Oo-HL-9vPpZXn14eLd6eqqNHWlUslbJTprq9oyAYOVUtJBQSNZk1ci7cBboVRvAToDbdO3g-RQD3Xfi8pwXgM_Kl5vvZu5myCTPkUz6k10k4mLDsbpf3-8W-ubcK-V5EpQlQUvd4IY7mbApCeHFsbReAgz6qoVPHfivM3oyRa1MSBGGPZtGNW_M9S7DPUuw1zx4u_p9vyf0DLwagvkSn0b5ujzsv6r-wVuvq0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763334337</pqid></control><display><type>article</type><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</creator><creatorcontrib>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</creatorcontrib><description>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c05941</identifier><identifier>PMID: 36475639</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Actins ; Actomyosin ; Cell Movement - physiology ; Fibroblasts ; Hydrogels - chemistry</subject><ispartof>ACS nano, 2023-01, Vol.17 (1), p.197-211</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</citedby><cites>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</cites><orcidid>0000-0002-8489-996X ; 0000-0002-6976-7512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c05941$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c05941$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36475639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hakeem, Reem M.</creatorcontrib><creatorcontrib>Subramanian, Bhagawat C.</creatorcontrib><creatorcontrib>Hockenberry, Max A.</creatorcontrib><creatorcontrib>King, Zayna T.</creatorcontrib><creatorcontrib>Butler, Mitchell T.</creatorcontrib><creatorcontrib>Legant, Wesley R.</creatorcontrib><creatorcontrib>Bear, James E.</creatorcontrib><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</description><subject>Actins</subject><subject>Actomyosin</subject><subject>Cell Movement - physiology</subject><subject>Fibroblasts</subject><subject>Hydrogels - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw5oZ8REJp7Thx7AvS0tIWqQhUQOJmOc6k6yqxtx6nEJ6Bh8ZolxUcONmyv_lmNH9RPGf0mNGKnRiL3vhwXFnaqJo9KA6Z4qKkUnx9uL837KB4gnhLadPKVjwuDrio20ZwdVj8XJGP65DCJozLBNH9gJ5cLn0MNzCSTwsmmMg3l9bkbDb5Iblh8IBILqLpHfiE5BruwYxIzhwm520iK5vCtAR0vnxjMPveg13nIctrwE3wCEicJ-eui6EbDaasjiGZ7w6fFo-GrIJnu_Oo-HL-9vPpZXn14eLd6eqqNHWlUslbJTprq9oyAYOVUtJBQSNZk1ci7cBboVRvAToDbdO3g-RQD3Xfi8pwXgM_Kl5vvZu5myCTPkUz6k10k4mLDsbpf3-8W-ubcK-V5EpQlQUvd4IY7mbApCeHFsbReAgz6qoVPHfivM3oyRa1MSBGGPZtGNW_M9S7DPUuw1zx4u_p9vyf0DLwagvkSn0b5ujzsv6r-wVuvq0g</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Hakeem, Reem M.</creator><creator>Subramanian, Bhagawat C.</creator><creator>Hockenberry, Max A.</creator><creator>King, Zayna T.</creator><creator>Butler, Mitchell T.</creator><creator>Legant, Wesley R.</creator><creator>Bear, James E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8489-996X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7512</orcidid></search><sort><creationdate>20230110</creationdate><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><author>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actins</topic><topic>Actomyosin</topic><topic>Cell Movement - physiology</topic><topic>Fibroblasts</topic><topic>Hydrogels - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakeem, Reem M.</creatorcontrib><creatorcontrib>Subramanian, Bhagawat C.</creatorcontrib><creatorcontrib>Hockenberry, Max A.</creatorcontrib><creatorcontrib>King, Zayna T.</creatorcontrib><creatorcontrib>Butler, Mitchell T.</creatorcontrib><creatorcontrib>Legant, Wesley R.</creatorcontrib><creatorcontrib>Bear, James E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakeem, Reem M.</au><au>Subramanian, Bhagawat C.</au><au>Hockenberry, Max A.</au><au>King, Zayna T.</au><au>Butler, Mitchell T.</au><au>Legant, Wesley R.</au><au>Bear, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>197</spage><epage>211</epage><pages>197-211</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36475639</pmid><doi>10.1021/acsnano.2c05941</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8489-996X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-01, Vol.17 (1), p.197-211 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839609 |
source | MEDLINE; American Chemical Society Journals |
subjects | Actins Actomyosin Cell Movement - physiology Fibroblasts Hydrogels - chemistry |
title | A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Photopolymerized%20Hydrogel%20System%20with%20Dual%20Stiffness%20Gradients%20Reveals%20Distinct%20Actomyosin-Based%20Mechano-Responses%20in%20Fibroblast%20Durotaxis&rft.jtitle=ACS%20nano&rft.au=Hakeem,%20Reem%20M.&rft.date=2023-01-10&rft.volume=17&rft.issue=1&rft.spage=197&rft.epage=211&rft.pages=197-211&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c05941&rft_dat=%3Cproquest_pubme%3E2763334337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763334337&rft_id=info:pmid/36475639&rfr_iscdi=true |