A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis

Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-01, Vol.17 (1), p.197-211
Hauptverfasser: Hakeem, Reem M., Subramanian, Bhagawat C., Hockenberry, Max A., King, Zayna T., Butler, Mitchell T., Legant, Wesley R., Bear, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 197
container_title ACS nano
container_volume 17
creator Hakeem, Reem M.
Subramanian, Bhagawat C.
Hockenberry, Max A.
King, Zayna T.
Butler, Mitchell T.
Legant, Wesley R.
Bear, James E.
description Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.
doi_str_mv 10.1021/acsnano.2c05941
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763334337</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw5oZ8REJp7Thx7AvS0tIWqQhUQOJmOc6k6yqxtx6nEJ6Bh8ZolxUcONmyv_lmNH9RPGf0mNGKnRiL3vhwXFnaqJo9KA6Z4qKkUnx9uL837KB4gnhLadPKVjwuDrio20ZwdVj8XJGP65DCJozLBNH9gJ5cLn0MNzCSTwsmmMg3l9bkbDb5Iblh8IBILqLpHfiE5BruwYxIzhwm520iK5vCtAR0vnxjMPveg13nIctrwE3wCEicJ-eui6EbDaasjiGZ7w6fFo-GrIJnu_Oo-HL-9vPpZXn14eLd6eqqNHWlUslbJTprq9oyAYOVUtJBQSNZk1ci7cBboVRvAToDbdO3g-RQD3Xfi8pwXgM_Kl5vvZu5myCTPkUz6k10k4mLDsbpf3-8W-ubcK-V5EpQlQUvd4IY7mbApCeHFsbReAgz6qoVPHfivM3oyRa1MSBGGPZtGNW_M9S7DPUuw1zx4u_p9vyf0DLwagvkSn0b5ujzsv6r-wVuvq0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763334337</pqid></control><display><type>article</type><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</creator><creatorcontrib>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</creatorcontrib><description>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c05941</identifier><identifier>PMID: 36475639</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Actins ; Actomyosin ; Cell Movement - physiology ; Fibroblasts ; Hydrogels - chemistry</subject><ispartof>ACS nano, 2023-01, Vol.17 (1), p.197-211</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</citedby><cites>FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</cites><orcidid>0000-0002-8489-996X ; 0000-0002-6976-7512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c05941$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c05941$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36475639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hakeem, Reem M.</creatorcontrib><creatorcontrib>Subramanian, Bhagawat C.</creatorcontrib><creatorcontrib>Hockenberry, Max A.</creatorcontrib><creatorcontrib>King, Zayna T.</creatorcontrib><creatorcontrib>Butler, Mitchell T.</creatorcontrib><creatorcontrib>Legant, Wesley R.</creatorcontrib><creatorcontrib>Bear, James E.</creatorcontrib><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</description><subject>Actins</subject><subject>Actomyosin</subject><subject>Cell Movement - physiology</subject><subject>Fibroblasts</subject><subject>Hydrogels - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw5oZ8REJp7Thx7AvS0tIWqQhUQOJmOc6k6yqxtx6nEJ6Bh8ZolxUcONmyv_lmNH9RPGf0mNGKnRiL3vhwXFnaqJo9KA6Z4qKkUnx9uL837KB4gnhLadPKVjwuDrio20ZwdVj8XJGP65DCJozLBNH9gJ5cLn0MNzCSTwsmmMg3l9bkbDb5Iblh8IBILqLpHfiE5BruwYxIzhwm520iK5vCtAR0vnxjMPveg13nIctrwE3wCEicJ-eui6EbDaasjiGZ7w6fFo-GrIJnu_Oo-HL-9vPpZXn14eLd6eqqNHWlUslbJTprq9oyAYOVUtJBQSNZk1ci7cBboVRvAToDbdO3g-RQD3Xfi8pwXgM_Kl5vvZu5myCTPkUz6k10k4mLDsbpf3-8W-ubcK-V5EpQlQUvd4IY7mbApCeHFsbReAgz6qoVPHfivM3oyRa1MSBGGPZtGNW_M9S7DPUuw1zx4u_p9vyf0DLwagvkSn0b5ujzsv6r-wVuvq0g</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Hakeem, Reem M.</creator><creator>Subramanian, Bhagawat C.</creator><creator>Hockenberry, Max A.</creator><creator>King, Zayna T.</creator><creator>Butler, Mitchell T.</creator><creator>Legant, Wesley R.</creator><creator>Bear, James E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8489-996X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7512</orcidid></search><sort><creationdate>20230110</creationdate><title>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</title><author>Hakeem, Reem M. ; Subramanian, Bhagawat C. ; Hockenberry, Max A. ; King, Zayna T. ; Butler, Mitchell T. ; Legant, Wesley R. ; Bear, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-3796bcc24c16efc8880f9e58150218cf37699dceebae75d7f83e4f4dd62a334e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actins</topic><topic>Actomyosin</topic><topic>Cell Movement - physiology</topic><topic>Fibroblasts</topic><topic>Hydrogels - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakeem, Reem M.</creatorcontrib><creatorcontrib>Subramanian, Bhagawat C.</creatorcontrib><creatorcontrib>Hockenberry, Max A.</creatorcontrib><creatorcontrib>King, Zayna T.</creatorcontrib><creatorcontrib>Butler, Mitchell T.</creatorcontrib><creatorcontrib>Legant, Wesley R.</creatorcontrib><creatorcontrib>Bear, James E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakeem, Reem M.</au><au>Subramanian, Bhagawat C.</au><au>Hockenberry, Max A.</au><au>King, Zayna T.</au><au>Butler, Mitchell T.</au><au>Legant, Wesley R.</au><au>Bear, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>197</spage><epage>211</epage><pages>197-211</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36475639</pmid><doi>10.1021/acsnano.2c05941</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8489-996X</orcidid><orcidid>https://orcid.org/0000-0002-6976-7512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-01, Vol.17 (1), p.197-211
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839609
source MEDLINE; American Chemical Society Journals
subjects Actins
Actomyosin
Cell Movement - physiology
Fibroblasts
Hydrogels - chemistry
title A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Photopolymerized%20Hydrogel%20System%20with%20Dual%20Stiffness%20Gradients%20Reveals%20Distinct%20Actomyosin-Based%20Mechano-Responses%20in%20Fibroblast%20Durotaxis&rft.jtitle=ACS%20nano&rft.au=Hakeem,%20Reem%20M.&rft.date=2023-01-10&rft.volume=17&rft.issue=1&rft.spage=197&rft.epage=211&rft.pages=197-211&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c05941&rft_dat=%3Cproquest_pubme%3E2763334337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763334337&rft_id=info:pmid/36475639&rfr_iscdi=true