Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction
Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modul...
Gespeichert in:
Veröffentlicht in: | Basic research in cardiology 2023-01, Vol.118 (1), p.3, Article 3 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Basic research in cardiology |
container_volume | 118 |
creator | Teixeira, Rayane Brinck Pfeiffer, Melissa Zhang, Peng Shafique, Ehtesham Rayta, Bonnie Karbasiafshar, Catherine Ahsan, Nagib Sellke, Frank W. Abid, M. Ruhul |
description | Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI. |
doi_str_mv | 10.1007/s00395-022-00976-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765772524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6J7fEGCVXlR6pUqcDacuzrjqvEDnYymnkU3hbPTCmFBQvLlu53z7nXp2leEvyWYCzfFYyZ4i2mtMVYSdFuHzWnpGO8JSvMHj94nzTPSrnFmHRCkKfNCROCKYHVafPzGtxi55AiChGNYU52naLLwQzo-uorCuOU0wYKStvgzBw2gKZ1KvXk3WAOfSY6tIeCq1iGEoYA0QKaE7Ipp2jyDkF0aV7DEJZx7xNTbDNMkP1SwKFxl6zJbu8Zojf5MM_z5ok3Q4EXd_dZ8_3jxbfzz-3l1acv5x8uW9vJbm6BWCU57z1jK2oBg7WEYev6Xqm-Ix2mytci5cZzyYw3zCpKedcTIcArz86a90fdaelHcBbinM2gpxzGOrlOJui_KzGs9U3aaLViqv5_FXhzJ5DTjwXKrMdQLAyDiZCWoqkUXErKaVfR1_-gt2nJsa53oChZESUrRY-UzamUDP5-GIL1Pnl9TF7X5PUheb2tTa8ernHf8jvqCrAjUGop3kD-4_0f2V-3O8Bk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765218197</pqid></control><display><type>article</type><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</creator><creatorcontrib>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</creatorcontrib><description>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</description><identifier>ISSN: 1435-1803</identifier><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-022-00976-x</identifier><identifier>PMID: 36639609</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiogenesis ; Animal models ; Animals ; Antioxidants ; Antioxidants - metabolism ; Cardiology ; Echocardiography ; Electron transport chain ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Endothelium - metabolism ; Energy efficiency ; Heart ; Heart attacks ; Medicine ; Medicine & Public Health ; Membrane potential ; Mice ; Mitochondria ; Mitochondria - metabolism ; Myocardial infarction ; Myocardial Infarction - metabolism ; NADH-ubiquinone oxidoreductase ; Original Contribution ; Oxidative Phosphorylation ; Oxidative stress ; Oxygen consumption ; Phosphorylation ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Resilience ; Superoxide dismutase ; Transgenic animals ; Ventricle</subject><ispartof>Basic research in cardiology, 2023-01, Vol.118 (1), p.3, Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</citedby><cites>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</cites><orcidid>0000-0002-6813-7527 ; 0000-0003-1871-5752 ; 0000-0003-2981-2638 ; 0000-0001-9749-6580 ; 0000-0001-7133-2537 ; 0000-0003-4611-4751 ; 0000-0002-8886-801X ; 0000-0003-1232-7310 ; 0000-0002-0190-5384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00395-022-00976-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00395-022-00976-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36639609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, Rayane Brinck</creatorcontrib><creatorcontrib>Pfeiffer, Melissa</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Shafique, Ehtesham</creatorcontrib><creatorcontrib>Rayta, Bonnie</creatorcontrib><creatorcontrib>Karbasiafshar, Catherine</creatorcontrib><creatorcontrib>Ahsan, Nagib</creatorcontrib><creatorcontrib>Sellke, Frank W.</creatorcontrib><creatorcontrib>Abid, M. Ruhul</creatorcontrib><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><addtitle>Basic Res Cardiol</addtitle><description>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</description><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Cardiology</subject><subject>Echocardiography</subject><subject>Electron transport chain</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Endothelium - metabolism</subject><subject>Energy efficiency</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - metabolism</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>Original Contribution</subject><subject>Oxidative Phosphorylation</subject><subject>Oxidative stress</subject><subject>Oxygen consumption</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Resilience</subject><subject>Superoxide dismutase</subject><subject>Transgenic animals</subject><subject>Ventricle</subject><issn>1435-1803</issn><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6J7fEGCVXlR6pUqcDacuzrjqvEDnYymnkU3hbPTCmFBQvLlu53z7nXp2leEvyWYCzfFYyZ4i2mtMVYSdFuHzWnpGO8JSvMHj94nzTPSrnFmHRCkKfNCROCKYHVafPzGtxi55AiChGNYU52naLLwQzo-uorCuOU0wYKStvgzBw2gKZ1KvXk3WAOfSY6tIeCq1iGEoYA0QKaE7Ipp2jyDkF0aV7DEJZx7xNTbDNMkP1SwKFxl6zJbu8Zojf5MM_z5ok3Q4EXd_dZ8_3jxbfzz-3l1acv5x8uW9vJbm6BWCU57z1jK2oBg7WEYev6Xqm-Ix2mytci5cZzyYw3zCpKedcTIcArz86a90fdaelHcBbinM2gpxzGOrlOJui_KzGs9U3aaLViqv5_FXhzJ5DTjwXKrMdQLAyDiZCWoqkUXErKaVfR1_-gt2nJsa53oChZESUrRY-UzamUDP5-GIL1Pnl9TF7X5PUheb2tTa8ernHf8jvqCrAjUGop3kD-4_0f2V-3O8Bk</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Teixeira, Rayane Brinck</creator><creator>Pfeiffer, Melissa</creator><creator>Zhang, Peng</creator><creator>Shafique, Ehtesham</creator><creator>Rayta, Bonnie</creator><creator>Karbasiafshar, Catherine</creator><creator>Ahsan, Nagib</creator><creator>Sellke, Frank W.</creator><creator>Abid, M. Ruhul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6813-7527</orcidid><orcidid>https://orcid.org/0000-0003-1871-5752</orcidid><orcidid>https://orcid.org/0000-0003-2981-2638</orcidid><orcidid>https://orcid.org/0000-0001-9749-6580</orcidid><orcidid>https://orcid.org/0000-0001-7133-2537</orcidid><orcidid>https://orcid.org/0000-0003-4611-4751</orcidid><orcidid>https://orcid.org/0000-0002-8886-801X</orcidid><orcidid>https://orcid.org/0000-0003-1232-7310</orcidid><orcidid>https://orcid.org/0000-0002-0190-5384</orcidid></search><sort><creationdate>20230113</creationdate><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><author>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Cardiology</topic><topic>Echocardiography</topic><topic>Electron transport chain</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Endothelium - metabolism</topic><topic>Energy efficiency</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - metabolism</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>Original Contribution</topic><topic>Oxidative Phosphorylation</topic><topic>Oxidative stress</topic><topic>Oxygen consumption</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Resilience</topic><topic>Superoxide dismutase</topic><topic>Transgenic animals</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, Rayane Brinck</creatorcontrib><creatorcontrib>Pfeiffer, Melissa</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Shafique, Ehtesham</creatorcontrib><creatorcontrib>Rayta, Bonnie</creatorcontrib><creatorcontrib>Karbasiafshar, Catherine</creatorcontrib><creatorcontrib>Ahsan, Nagib</creatorcontrib><creatorcontrib>Sellke, Frank W.</creatorcontrib><creatorcontrib>Abid, M. Ruhul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, Rayane Brinck</au><au>Pfeiffer, Melissa</au><au>Zhang, Peng</au><au>Shafique, Ehtesham</au><au>Rayta, Bonnie</au><au>Karbasiafshar, Catherine</au><au>Ahsan, Nagib</au><au>Sellke, Frank W.</au><au>Abid, M. Ruhul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</atitle><jtitle>Basic research in cardiology</jtitle><stitle>Basic Res Cardiol</stitle><addtitle>Basic Res Cardiol</addtitle><date>2023-01-13</date><risdate>2023</risdate><volume>118</volume><issue>1</issue><spage>3</spage><pages>3-</pages><artnum>3</artnum><issn>1435-1803</issn><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36639609</pmid><doi>10.1007/s00395-022-00976-x</doi><orcidid>https://orcid.org/0000-0002-6813-7527</orcidid><orcidid>https://orcid.org/0000-0003-1871-5752</orcidid><orcidid>https://orcid.org/0000-0003-2981-2638</orcidid><orcidid>https://orcid.org/0000-0001-9749-6580</orcidid><orcidid>https://orcid.org/0000-0001-7133-2537</orcidid><orcidid>https://orcid.org/0000-0003-4611-4751</orcidid><orcidid>https://orcid.org/0000-0002-8886-801X</orcidid><orcidid>https://orcid.org/0000-0003-1232-7310</orcidid><orcidid>https://orcid.org/0000-0002-0190-5384</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-1803 |
ispartof | Basic research in cardiology, 2023-01, Vol.118 (1), p.3, Article 3 |
issn | 1435-1803 0300-8428 1435-1803 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839395 |
source | MEDLINE; SpringerNature Journals |
subjects | Angiogenesis Animal models Animals Antioxidants Antioxidants - metabolism Cardiology Echocardiography Electron transport chain Endothelial cells Endothelial Cells - metabolism Endothelium Endothelium - metabolism Energy efficiency Heart Heart attacks Medicine Medicine & Public Health Membrane potential Mice Mitochondria Mitochondria - metabolism Myocardial infarction Myocardial Infarction - metabolism NADH-ubiquinone oxidoreductase Original Contribution Oxidative Phosphorylation Oxidative stress Oxygen consumption Phosphorylation Proteomics Reactive oxygen species Reactive Oxygen Species - metabolism Reperfusion Resilience Superoxide dismutase Transgenic animals Ventricle |
title | Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20in%20mitochondrial%20ROS%20improves%20oxidative%20phosphorylation%20and%20provides%20resilience%20to%20coronary%20endothelium%20in%20non-reperfused%20myocardial%20infarction&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Teixeira,%20Rayane%20Brinck&rft.date=2023-01-13&rft.volume=118&rft.issue=1&rft.spage=3&rft.pages=3-&rft.artnum=3&rft.issn=1435-1803&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-022-00976-x&rft_dat=%3Cproquest_pubme%3E2765772524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765218197&rft_id=info:pmid/36639609&rfr_iscdi=true |