Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction

Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic research in cardiology 2023-01, Vol.118 (1), p.3, Article 3
Hauptverfasser: Teixeira, Rayane Brinck, Pfeiffer, Melissa, Zhang, Peng, Shafique, Ehtesham, Rayta, Bonnie, Karbasiafshar, Catherine, Ahsan, Nagib, Sellke, Frank W., Abid, M. Ruhul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3
container_title Basic research in cardiology
container_volume 118
creator Teixeira, Rayane Brinck
Pfeiffer, Melissa
Zhang, Peng
Shafique, Ehtesham
Rayta, Bonnie
Karbasiafshar, Catherine
Ahsan, Nagib
Sellke, Frank W.
Abid, M. Ruhul
description Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.
doi_str_mv 10.1007/s00395-022-00976-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765772524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6J7fEGCVXlR6pUqcDacuzrjqvEDnYymnkU3hbPTCmFBQvLlu53z7nXp2leEvyWYCzfFYyZ4i2mtMVYSdFuHzWnpGO8JSvMHj94nzTPSrnFmHRCkKfNCROCKYHVafPzGtxi55AiChGNYU52naLLwQzo-uorCuOU0wYKStvgzBw2gKZ1KvXk3WAOfSY6tIeCq1iGEoYA0QKaE7Ipp2jyDkF0aV7DEJZx7xNTbDNMkP1SwKFxl6zJbu8Zojf5MM_z5ok3Q4EXd_dZ8_3jxbfzz-3l1acv5x8uW9vJbm6BWCU57z1jK2oBg7WEYev6Xqm-Ix2mytci5cZzyYw3zCpKedcTIcArz86a90fdaelHcBbinM2gpxzGOrlOJui_KzGs9U3aaLViqv5_FXhzJ5DTjwXKrMdQLAyDiZCWoqkUXErKaVfR1_-gt2nJsa53oChZESUrRY-UzamUDP5-GIL1Pnl9TF7X5PUheb2tTa8ernHf8jvqCrAjUGop3kD-4_0f2V-3O8Bk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765218197</pqid></control><display><type>article</type><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</creator><creatorcontrib>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</creatorcontrib><description>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</description><identifier>ISSN: 1435-1803</identifier><identifier>ISSN: 0300-8428</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-022-00976-x</identifier><identifier>PMID: 36639609</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angiogenesis ; Animal models ; Animals ; Antioxidants ; Antioxidants - metabolism ; Cardiology ; Echocardiography ; Electron transport chain ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Endothelium - metabolism ; Energy efficiency ; Heart ; Heart attacks ; Medicine ; Medicine &amp; Public Health ; Membrane potential ; Mice ; Mitochondria ; Mitochondria - metabolism ; Myocardial infarction ; Myocardial Infarction - metabolism ; NADH-ubiquinone oxidoreductase ; Original Contribution ; Oxidative Phosphorylation ; Oxidative stress ; Oxygen consumption ; Phosphorylation ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Resilience ; Superoxide dismutase ; Transgenic animals ; Ventricle</subject><ispartof>Basic research in cardiology, 2023-01, Vol.118 (1), p.3, Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</citedby><cites>FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</cites><orcidid>0000-0002-6813-7527 ; 0000-0003-1871-5752 ; 0000-0003-2981-2638 ; 0000-0001-9749-6580 ; 0000-0001-7133-2537 ; 0000-0003-4611-4751 ; 0000-0002-8886-801X ; 0000-0003-1232-7310 ; 0000-0002-0190-5384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00395-022-00976-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00395-022-00976-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36639609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teixeira, Rayane Brinck</creatorcontrib><creatorcontrib>Pfeiffer, Melissa</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Shafique, Ehtesham</creatorcontrib><creatorcontrib>Rayta, Bonnie</creatorcontrib><creatorcontrib>Karbasiafshar, Catherine</creatorcontrib><creatorcontrib>Ahsan, Nagib</creatorcontrib><creatorcontrib>Sellke, Frank W.</creatorcontrib><creatorcontrib>Abid, M. Ruhul</creatorcontrib><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><addtitle>Basic Res Cardiol</addtitle><description>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</description><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Cardiology</subject><subject>Echocardiography</subject><subject>Electron transport chain</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Endothelium - metabolism</subject><subject>Energy efficiency</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane potential</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - metabolism</subject><subject>NADH-ubiquinone oxidoreductase</subject><subject>Original Contribution</subject><subject>Oxidative Phosphorylation</subject><subject>Oxidative stress</subject><subject>Oxygen consumption</subject><subject>Phosphorylation</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Resilience</subject><subject>Superoxide dismutase</subject><subject>Transgenic animals</subject><subject>Ventricle</subject><issn>1435-1803</issn><issn>0300-8428</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kc1u1DAUhSMEoqXwAiyQJTZsAv6J7fEGCVXlR6pUqcDacuzrjqvEDnYymnkU3hbPTCmFBQvLlu53z7nXp2leEvyWYCzfFYyZ4i2mtMVYSdFuHzWnpGO8JSvMHj94nzTPSrnFmHRCkKfNCROCKYHVafPzGtxi55AiChGNYU52naLLwQzo-uorCuOU0wYKStvgzBw2gKZ1KvXk3WAOfSY6tIeCq1iGEoYA0QKaE7Ipp2jyDkF0aV7DEJZx7xNTbDNMkP1SwKFxl6zJbu8Zojf5MM_z5ok3Q4EXd_dZ8_3jxbfzz-3l1acv5x8uW9vJbm6BWCU57z1jK2oBg7WEYev6Xqm-Ix2mytci5cZzyYw3zCpKedcTIcArz86a90fdaelHcBbinM2gpxzGOrlOJui_KzGs9U3aaLViqv5_FXhzJ5DTjwXKrMdQLAyDiZCWoqkUXErKaVfR1_-gt2nJsa53oChZESUrRY-UzamUDP5-GIL1Pnl9TF7X5PUheb2tTa8ernHf8jvqCrAjUGop3kD-4_0f2V-3O8Bk</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Teixeira, Rayane Brinck</creator><creator>Pfeiffer, Melissa</creator><creator>Zhang, Peng</creator><creator>Shafique, Ehtesham</creator><creator>Rayta, Bonnie</creator><creator>Karbasiafshar, Catherine</creator><creator>Ahsan, Nagib</creator><creator>Sellke, Frank W.</creator><creator>Abid, M. Ruhul</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6813-7527</orcidid><orcidid>https://orcid.org/0000-0003-1871-5752</orcidid><orcidid>https://orcid.org/0000-0003-2981-2638</orcidid><orcidid>https://orcid.org/0000-0001-9749-6580</orcidid><orcidid>https://orcid.org/0000-0001-7133-2537</orcidid><orcidid>https://orcid.org/0000-0003-4611-4751</orcidid><orcidid>https://orcid.org/0000-0002-8886-801X</orcidid><orcidid>https://orcid.org/0000-0003-1232-7310</orcidid><orcidid>https://orcid.org/0000-0002-0190-5384</orcidid></search><sort><creationdate>20230113</creationdate><title>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</title><author>Teixeira, Rayane Brinck ; Pfeiffer, Melissa ; Zhang, Peng ; Shafique, Ehtesham ; Rayta, Bonnie ; Karbasiafshar, Catherine ; Ahsan, Nagib ; Sellke, Frank W. ; Abid, M. Ruhul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e1c9755bf3382ce0ecc130cdbb99b414029fbf325af573afa3c92254b166ef9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Cardiology</topic><topic>Echocardiography</topic><topic>Electron transport chain</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Endothelium - metabolism</topic><topic>Energy efficiency</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane potential</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - metabolism</topic><topic>NADH-ubiquinone oxidoreductase</topic><topic>Original Contribution</topic><topic>Oxidative Phosphorylation</topic><topic>Oxidative stress</topic><topic>Oxygen consumption</topic><topic>Phosphorylation</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Resilience</topic><topic>Superoxide dismutase</topic><topic>Transgenic animals</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teixeira, Rayane Brinck</creatorcontrib><creatorcontrib>Pfeiffer, Melissa</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Shafique, Ehtesham</creatorcontrib><creatorcontrib>Rayta, Bonnie</creatorcontrib><creatorcontrib>Karbasiafshar, Catherine</creatorcontrib><creatorcontrib>Ahsan, Nagib</creatorcontrib><creatorcontrib>Sellke, Frank W.</creatorcontrib><creatorcontrib>Abid, M. Ruhul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teixeira, Rayane Brinck</au><au>Pfeiffer, Melissa</au><au>Zhang, Peng</au><au>Shafique, Ehtesham</au><au>Rayta, Bonnie</au><au>Karbasiafshar, Catherine</au><au>Ahsan, Nagib</au><au>Sellke, Frank W.</au><au>Abid, M. Ruhul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction</atitle><jtitle>Basic research in cardiology</jtitle><stitle>Basic Res Cardiol</stitle><addtitle>Basic Res Cardiol</addtitle><date>2023-01-13</date><risdate>2023</risdate><volume>118</volume><issue>1</issue><spage>3</spage><pages>3-</pages><artnum>3</artnum><issn>1435-1803</issn><issn>0300-8428</issn><eissn>1435-1803</eissn><abstract>Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36639609</pmid><doi>10.1007/s00395-022-00976-x</doi><orcidid>https://orcid.org/0000-0002-6813-7527</orcidid><orcidid>https://orcid.org/0000-0003-1871-5752</orcidid><orcidid>https://orcid.org/0000-0003-2981-2638</orcidid><orcidid>https://orcid.org/0000-0001-9749-6580</orcidid><orcidid>https://orcid.org/0000-0001-7133-2537</orcidid><orcidid>https://orcid.org/0000-0003-4611-4751</orcidid><orcidid>https://orcid.org/0000-0002-8886-801X</orcidid><orcidid>https://orcid.org/0000-0003-1232-7310</orcidid><orcidid>https://orcid.org/0000-0002-0190-5384</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-1803
ispartof Basic research in cardiology, 2023-01, Vol.118 (1), p.3, Article 3
issn 1435-1803
0300-8428
1435-1803
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839395
source MEDLINE; SpringerNature Journals
subjects Angiogenesis
Animal models
Animals
Antioxidants
Antioxidants - metabolism
Cardiology
Echocardiography
Electron transport chain
Endothelial cells
Endothelial Cells - metabolism
Endothelium
Endothelium - metabolism
Energy efficiency
Heart
Heart attacks
Medicine
Medicine & Public Health
Membrane potential
Mice
Mitochondria
Mitochondria - metabolism
Myocardial infarction
Myocardial Infarction - metabolism
NADH-ubiquinone oxidoreductase
Original Contribution
Oxidative Phosphorylation
Oxidative stress
Oxygen consumption
Phosphorylation
Proteomics
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reperfusion
Resilience
Superoxide dismutase
Transgenic animals
Ventricle
title Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20in%20mitochondrial%20ROS%20improves%20oxidative%20phosphorylation%20and%20provides%20resilience%20to%20coronary%20endothelium%20in%20non-reperfused%20myocardial%20infarction&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Teixeira,%20Rayane%20Brinck&rft.date=2023-01-13&rft.volume=118&rft.issue=1&rft.spage=3&rft.pages=3-&rft.artnum=3&rft.issn=1435-1803&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-022-00976-x&rft_dat=%3Cproquest_pubme%3E2765772524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765218197&rft_id=info:pmid/36639609&rfr_iscdi=true