An Artificial Intelligence-as-a-Service Architecture for deep learning model embodiment on low-cost devices: A case study of COVID-19 diagnosis
Coronavirus Disease-2019 (COVID-19) causes Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) and has opened several challenges for research concerning diagnosis and treatment. Chest X-rays and computed tomography (CT) scans are effective and fast alternatives to detect and assess the dam...
Gespeichert in:
Veröffentlicht in: | Applied soft computing 2023-02, Vol.134, p.110014, Article 110014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronavirus Disease-2019 (COVID-19) causes Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) and has opened several challenges for research concerning diagnosis and treatment. Chest X-rays and computed tomography (CT) scans are effective and fast alternatives to detect and assess the damage that COVID causes to the lungs at different stages of the disease. Although the CT scan is an accurate exam, the chest X-ray is still helpful due to the cheaper, faster, lower radiation exposure, and is available in low-incoming countries. Computer-aided diagnostic systems based on Artificial Intelligence (AI) and computer vision are an alternative to extract features from X-ray images, providing an accurate COVID-19 diagnosis. However, specialized and expensive computational resources come across as challenging. Also, it needs to be better understood how low-cost devices and smartphones can hold AI models to predict diseases timely. Even using deep learning to support image-based medical diagnosis, challenges still need to be addressed once the known techniques use centralized intelligence on high-performance servers, making it difficult to embed these models in low-cost devices. This paper sheds light on these questions by proposing the Artificial Intelligence as a Service Architecture (AIaaS), a hybrid AI support operation, both centralized and distributed, with the purpose of enabling the embedding of already-trained models on low-cost devices or smartphones. We demonstrated the suitability of our architecture through a case study of COVID-19 diagnosis using a low-cost device. Among the main findings of this paper, we point out the performance evaluation of low-cost devices to handle COVID-19 predicting tasks timely and accurately and the quantitative performance evaluation of CNN models embodiment on low-cost devices.
•A new AIaaS Architecture to deliver AI models for embodiment on low-cost devices.•A case study of COVID-19 to demonstrate the suitability of our AIaaS Architecture.•Evaluation of the computational cost of embedding CNNs in a low-cost device.•Relationship evaluation between the CNN computational cost and the number of parameters.•A short state-of-the-art survey regarding COVID-19 diagnosis methods using edge devices. |
---|---|
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2023.110014 |