Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx

Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad rol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2021-01, Vol.383 (1), p.91-112
Hauptverfasser: Puñal, Vanessa M., Ahmed, Maria, Thornton-Kolbe, Emma M., Clowney, E. Josephine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 91
container_title Cell and tissue research
container_volume 383
creator Puñal, Vanessa M.
Ahmed, Maria
Thornton-Kolbe, Emma M.
Clowney, E. Josephine
description Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
doi_str_mv 10.1007/s00441-020-03386-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651359587</galeid><sourcerecordid>A651359587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtR3HX1D3iQBkE82Gulk-5OPAjL4hcseHHBW0wn1TNZupMxSY_Ovzfz4bojIjkEUs_7Vqp4i-IpgXMC0L2OAIyRCmqogFLeVuxecUoYrSvgHb9fnAKFuura9utJ8SjGGwDC2lY8LE4oZcA47U6Lb9cuKbcYrVuUaYnlDxswvikNrnH0qwldKv1QxpUKEV-VxsYUbD8nNKX2zqFOdm3TprRup57muAzeT2XvzabUatz8fFw8GNQY8cnhPiuu37_7cvmxuvr84dPlxVWlm65OlWHATUcYMqH1IAhnpKW9JoOgbW-IMsNQo-AD1Vj3nAow2CnFWoBGCYaCnhVv976ruZ_Q6PzzoEa5CnZSYSO9svK44uxSLvxaCk4bEFuDlweD4L_PGJOcbNQ4jsqhn6OsWdc0tK6BZPT5X-iNn4PL42WKdy3lbGd4oBZqRGnd4HNfvTWVF21DaCMa3mXq_B9UPgYnm3eMg83vR4IXdwRLVGNaRj_OyXoXj8F6D-rgYww43C6DgNwGSO4DJHOA5C5AkmXRs7trvJX8TkwG6B6IueQWGP7M_h_bXxmV0NE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487638499</pqid></control><display><type>article</type><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</creator><creatorcontrib>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</creatorcontrib><description>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-020-03386-4</identifier><identifier>PMID: 33404837</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Associative learning ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - physiology ; Cerebellum ; Environmental effects ; Human Genetics ; Invertebrates ; Molecular Medicine ; Molecular modelling ; Mushroom bodies ; Mushroom Bodies - physiology ; Neural circuitry ; Neural coding ; Neural networks ; Neurons ; Proteomics ; Review ; Sensory stimuli</subject><ispartof>Cell and tissue research, 2021-01, Vol.383 (1), p.91-112</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</citedby><cites>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</cites><orcidid>0000-0002-9150-9464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-020-03386-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-020-03386-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33404837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puñal, Vanessa M.</creatorcontrib><creatorcontrib>Ahmed, Maria</creatorcontrib><creatorcontrib>Thornton-Kolbe, Emma M.</creatorcontrib><creatorcontrib>Clowney, E. Josephine</creatorcontrib><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</description><subject>Animals</subject><subject>Associative learning</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Cerebellum</subject><subject>Environmental effects</subject><subject>Human Genetics</subject><subject>Invertebrates</subject><subject>Molecular Medicine</subject><subject>Molecular modelling</subject><subject>Mushroom bodies</subject><subject>Mushroom Bodies - physiology</subject><subject>Neural circuitry</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Proteomics</subject><subject>Review</subject><subject>Sensory stimuli</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk2LFDEQhhtR3HX1D3iQBkE82Gulk-5OPAjL4hcseHHBW0wn1TNZupMxSY_Ovzfz4bojIjkEUs_7Vqp4i-IpgXMC0L2OAIyRCmqogFLeVuxecUoYrSvgHb9fnAKFuura9utJ8SjGGwDC2lY8LE4oZcA47U6Lb9cuKbcYrVuUaYnlDxswvikNrnH0qwldKv1QxpUKEV-VxsYUbD8nNKX2zqFOdm3TprRup57muAzeT2XvzabUatz8fFw8GNQY8cnhPiuu37_7cvmxuvr84dPlxVWlm65OlWHATUcYMqH1IAhnpKW9JoOgbW-IMsNQo-AD1Vj3nAow2CnFWoBGCYaCnhVv976ruZ_Q6PzzoEa5CnZSYSO9svK44uxSLvxaCk4bEFuDlweD4L_PGJOcbNQ4jsqhn6OsWdc0tK6BZPT5X-iNn4PL42WKdy3lbGd4oBZqRGnd4HNfvTWVF21DaCMa3mXq_B9UPgYnm3eMg83vR4IXdwRLVGNaRj_OyXoXj8F6D-rgYww43C6DgNwGSO4DJHOA5C5AkmXRs7trvJX8TkwG6B6IueQWGP7M_h_bXxmV0NE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Puñal, Vanessa M.</creator><creator>Ahmed, Maria</creator><creator>Thornton-Kolbe, Emma M.</creator><creator>Clowney, E. Josephine</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9150-9464</orcidid></search><sort><creationdate>20210101</creationdate><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><author>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Associative learning</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Cerebellum</topic><topic>Environmental effects</topic><topic>Human Genetics</topic><topic>Invertebrates</topic><topic>Molecular Medicine</topic><topic>Molecular modelling</topic><topic>Mushroom bodies</topic><topic>Mushroom Bodies - physiology</topic><topic>Neural circuitry</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Proteomics</topic><topic>Review</topic><topic>Sensory stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puñal, Vanessa M.</creatorcontrib><creatorcontrib>Ahmed, Maria</creatorcontrib><creatorcontrib>Thornton-Kolbe, Emma M.</creatorcontrib><creatorcontrib>Clowney, E. Josephine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puñal, Vanessa M.</au><au>Ahmed, Maria</au><au>Thornton-Kolbe, Emma M.</au><au>Clowney, E. Josephine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>383</volume><issue>1</issue><spage>91</spage><epage>112</epage><pages>91-112</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33404837</pmid><doi>10.1007/s00441-020-03386-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9150-9464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2021-01, Vol.383 (1), p.91-112
issn 0302-766X
1432-0878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835099
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Associative learning
Biomedical and Life Sciences
Biomedicine
Brain
Brain - physiology
Cerebellum
Environmental effects
Human Genetics
Invertebrates
Molecular Medicine
Molecular modelling
Mushroom bodies
Mushroom Bodies - physiology
Neural circuitry
Neural coding
Neural networks
Neurons
Proteomics
Review
Sensory stimuli
title Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untangling%20the%20wires:%20development%20of%20sparse,%20distributed%20connectivity%20in%20the%20mushroom%20body%20calyx&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Pu%C3%B1al,%20Vanessa%20M.&rft.date=2021-01-01&rft.volume=383&rft.issue=1&rft.spage=91&rft.epage=112&rft.pages=91-112&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-020-03386-4&rft_dat=%3Cgale_pubme%3EA651359587%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487638499&rft_id=info:pmid/33404837&rft_galeid=A651359587&rfr_iscdi=true