Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad rol...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 2021-01, Vol.383 (1), p.91-112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Cell and tissue research |
container_volume | 383 |
creator | Puñal, Vanessa M. Ahmed, Maria Thornton-Kolbe, Emma M. Clowney, E. Josephine |
description | Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar,
Drosophila
mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center. |
doi_str_mv | 10.1007/s00441-020-03386-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651359587</galeid><sourcerecordid>A651359587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtR3HX1D3iQBkE82Gulk-5OPAjL4hcseHHBW0wn1TNZupMxSY_Ovzfz4bojIjkEUs_7Vqp4i-IpgXMC0L2OAIyRCmqogFLeVuxecUoYrSvgHb9fnAKFuura9utJ8SjGGwDC2lY8LE4oZcA47U6Lb9cuKbcYrVuUaYnlDxswvikNrnH0qwldKv1QxpUKEV-VxsYUbD8nNKX2zqFOdm3TprRup57muAzeT2XvzabUatz8fFw8GNQY8cnhPiuu37_7cvmxuvr84dPlxVWlm65OlWHATUcYMqH1IAhnpKW9JoOgbW-IMsNQo-AD1Vj3nAow2CnFWoBGCYaCnhVv976ruZ_Q6PzzoEa5CnZSYSO9svK44uxSLvxaCk4bEFuDlweD4L_PGJOcbNQ4jsqhn6OsWdc0tK6BZPT5X-iNn4PL42WKdy3lbGd4oBZqRGnd4HNfvTWVF21DaCMa3mXq_B9UPgYnm3eMg83vR4IXdwRLVGNaRj_OyXoXj8F6D-rgYww43C6DgNwGSO4DJHOA5C5AkmXRs7trvJX8TkwG6B6IueQWGP7M_h_bXxmV0NE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487638499</pqid></control><display><type>article</type><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</creator><creatorcontrib>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</creatorcontrib><description>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar,
Drosophila
mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-020-03386-4</identifier><identifier>PMID: 33404837</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Associative learning ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - physiology ; Cerebellum ; Environmental effects ; Human Genetics ; Invertebrates ; Molecular Medicine ; Molecular modelling ; Mushroom bodies ; Mushroom Bodies - physiology ; Neural circuitry ; Neural coding ; Neural networks ; Neurons ; Proteomics ; Review ; Sensory stimuli</subject><ispartof>Cell and tissue research, 2021-01, Vol.383 (1), p.91-112</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</citedby><cites>FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</cites><orcidid>0000-0002-9150-9464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-020-03386-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-020-03386-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33404837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puñal, Vanessa M.</creatorcontrib><creatorcontrib>Ahmed, Maria</creatorcontrib><creatorcontrib>Thornton-Kolbe, Emma M.</creatorcontrib><creatorcontrib>Clowney, E. Josephine</creatorcontrib><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar,
Drosophila
mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</description><subject>Animals</subject><subject>Associative learning</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Cerebellum</subject><subject>Environmental effects</subject><subject>Human Genetics</subject><subject>Invertebrates</subject><subject>Molecular Medicine</subject><subject>Molecular modelling</subject><subject>Mushroom bodies</subject><subject>Mushroom Bodies - physiology</subject><subject>Neural circuitry</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Proteomics</subject><subject>Review</subject><subject>Sensory stimuli</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk2LFDEQhhtR3HX1D3iQBkE82Gulk-5OPAjL4hcseHHBW0wn1TNZupMxSY_Ovzfz4bojIjkEUs_7Vqp4i-IpgXMC0L2OAIyRCmqogFLeVuxecUoYrSvgHb9fnAKFuura9utJ8SjGGwDC2lY8LE4oZcA47U6Lb9cuKbcYrVuUaYnlDxswvikNrnH0qwldKv1QxpUKEV-VxsYUbD8nNKX2zqFOdm3TprRup57muAzeT2XvzabUatz8fFw8GNQY8cnhPiuu37_7cvmxuvr84dPlxVWlm65OlWHATUcYMqH1IAhnpKW9JoOgbW-IMsNQo-AD1Vj3nAow2CnFWoBGCYaCnhVv976ruZ_Q6PzzoEa5CnZSYSO9svK44uxSLvxaCk4bEFuDlweD4L_PGJOcbNQ4jsqhn6OsWdc0tK6BZPT5X-iNn4PL42WKdy3lbGd4oBZqRGnd4HNfvTWVF21DaCMa3mXq_B9UPgYnm3eMg83vR4IXdwRLVGNaRj_OyXoXj8F6D-rgYww43C6DgNwGSO4DJHOA5C5AkmXRs7trvJX8TkwG6B6IueQWGP7M_h_bXxmV0NE</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Puñal, Vanessa M.</creator><creator>Ahmed, Maria</creator><creator>Thornton-Kolbe, Emma M.</creator><creator>Clowney, E. Josephine</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9150-9464</orcidid></search><sort><creationdate>20210101</creationdate><title>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</title><author>Puñal, Vanessa M. ; Ahmed, Maria ; Thornton-Kolbe, Emma M. ; Clowney, E. Josephine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-d408d714e49ccf9184163bc1f936bd1adff2e98f3ce2b8390de7aa46005a94e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Associative learning</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Cerebellum</topic><topic>Environmental effects</topic><topic>Human Genetics</topic><topic>Invertebrates</topic><topic>Molecular Medicine</topic><topic>Molecular modelling</topic><topic>Mushroom bodies</topic><topic>Mushroom Bodies - physiology</topic><topic>Neural circuitry</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Proteomics</topic><topic>Review</topic><topic>Sensory stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puñal, Vanessa M.</creatorcontrib><creatorcontrib>Ahmed, Maria</creatorcontrib><creatorcontrib>Thornton-Kolbe, Emma M.</creatorcontrib><creatorcontrib>Clowney, E. Josephine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puñal, Vanessa M.</au><au>Ahmed, Maria</au><au>Thornton-Kolbe, Emma M.</au><au>Clowney, E. Josephine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>383</volume><issue>1</issue><spage>91</spage><epage>112</epage><pages>91-112</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar,
Drosophila
mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33404837</pmid><doi>10.1007/s00441-020-03386-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9150-9464</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-766X |
ispartof | Cell and tissue research, 2021-01, Vol.383 (1), p.91-112 |
issn | 0302-766X 1432-0878 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9835099 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Associative learning Biomedical and Life Sciences Biomedicine Brain Brain - physiology Cerebellum Environmental effects Human Genetics Invertebrates Molecular Medicine Molecular modelling Mushroom bodies Mushroom Bodies - physiology Neural circuitry Neural coding Neural networks Neurons Proteomics Review Sensory stimuli |
title | Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untangling%20the%20wires:%20development%20of%20sparse,%20distributed%20connectivity%20in%20the%20mushroom%20body%20calyx&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Pu%C3%B1al,%20Vanessa%20M.&rft.date=2021-01-01&rft.volume=383&rft.issue=1&rft.spage=91&rft.epage=112&rft.pages=91-112&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-020-03386-4&rft_dat=%3Cgale_pubme%3EA651359587%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487638499&rft_id=info:pmid/33404837&rft_galeid=A651359587&rfr_iscdi=true |