Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics

Biomass dynamics capture information on population dynamics and ecosystem‐level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a specie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2023-01, Vol.13 (1), p.e9685-n/a
Hauptverfasser: Gibert, Jean P., Wieczynski, Daniel J., Han, Ze‐Yi, Yammine, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e9685
container_title Ecology and evolution
container_volume 13
creator Gibert, Jean P.
Wieczynski, Daniel J.
Han, Ze‐Yi
Yammine, Andrea
description Biomass dynamics capture information on population dynamics and ecosystem‐level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time‐series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment‐dependent eco‐phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures. We show that temperature and temperature fluctuations influence biomass dynamics through distinct effects on body size and density.
doi_str_mv 10.1002/ece3.9685
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9831973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770579453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4705-b85ce7194d2eced1effe57aa4729ccc433a75bdb56badf7c5e1821b1f3651a583</originalsourceid><addsrcrecordid>eNp1kc2KFDEURoMozjDOwheQoCsXPZNUkkpqI0jT_sCAIroOqZtbdsaupEzSSu98BJ_RJ7HKHodxYTYJ5HDu_fgIeczZBWesuURAcdG1Rt0jpw2TaqW1MvfvvE_IeSnXbD4tayTTD8mJaFspNZOn5P0HNwVPEdKvHz-nLcZUD1MAOiD63sEX6qKndYu04jhhdnWfkWYsU4oFaRpoH9LoSqH-EN0YoDwiDwa3K3h-c5-RT682H9dvVlfvXr9dv7xawTxYrXqjADXvpG_mAJ7jMKDSzknddAAghXBa9b5Xbe_8oEEhNw3v-SBaxZ0y4oy8OHqnfT-iB4w1u52dchhdPtjkgv33J4at_Zy-2c4I3mkxC54eBanUYAuEirCFFCNCtbxjxpgFenYzJaeveyzVXqd9jnMw2-g5h-6kWqjnRwpyKiXjcLsGZ3YpyS4l2aWkmX1yd-9b8m8lM3B5BL6HHR7-b7Kb9Ub8Uf4GLGed4A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770579453</pqid></control><display><type>article</type><title>Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Gibert, Jean P. ; Wieczynski, Daniel J. ; Han, Ze‐Yi ; Yammine, Andrea</creator><creatorcontrib>Gibert, Jean P. ; Wieczynski, Daniel J. ; Han, Ze‐Yi ; Yammine, Andrea ; Duke Univ., Durham, NC (United States)</creatorcontrib><description>Biomass dynamics capture information on population dynamics and ecosystem‐level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time‐series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment‐dependent eco‐phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures. We show that temperature and temperature fluctuations influence biomass dynamics through distinct effects on body size and density.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.9685</identifier><identifier>PMID: 36644704</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Autecology ; Biomass ; Carbon ; Carrying capacity ; Climate change ; Density ; Dynamics ; Ecological effects ; Ecosystems ; ENVIRONMENTAL SCIENCES ; Environmental Sciences &amp; Ecology ; Evolutionary Biology ; Functional Ecology ; Global Change Ecology ; Global climate ; Humidity ; Influence ; Laboratories ; Metabolism ; Microorganisms ; Population ; Population dynamics ; Predation ; Respiration ; temperature ; Temperature effects ; temperature size rule ; Time series ; warming</subject><ispartof>Ecology and evolution, 2023-01, Vol.13 (1), p.e9685-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Ecology and Evolution published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4705-b85ce7194d2eced1effe57aa4729ccc433a75bdb56badf7c5e1821b1f3651a583</citedby><cites>FETCH-LOGICAL-c4705-b85ce7194d2eced1effe57aa4729ccc433a75bdb56badf7c5e1821b1f3651a583</cites><orcidid>0000-0003-4090-2677 ; 0000-0001-5552-8636 ; 0000-0002-5083-6418 ; 0000000155528636 ; 0000000340902677 ; 0000000250836418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831973/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,11564,27926,27927,45576,45577,46054,46478,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36644704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1908883$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gibert, Jean P.</creatorcontrib><creatorcontrib>Wieczynski, Daniel J.</creatorcontrib><creatorcontrib>Han, Ze‐Yi</creatorcontrib><creatorcontrib>Yammine, Andrea</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><title>Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Biomass dynamics capture information on population dynamics and ecosystem‐level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time‐series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment‐dependent eco‐phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures. We show that temperature and temperature fluctuations influence biomass dynamics through distinct effects on body size and density.</description><subject>Autecology</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carrying capacity</subject><subject>Climate change</subject><subject>Density</subject><subject>Dynamics</subject><subject>Ecological effects</subject><subject>Ecosystems</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Evolutionary Biology</subject><subject>Functional Ecology</subject><subject>Global Change Ecology</subject><subject>Global climate</subject><subject>Humidity</subject><subject>Influence</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Population</subject><subject>Population dynamics</subject><subject>Predation</subject><subject>Respiration</subject><subject>temperature</subject><subject>Temperature effects</subject><subject>temperature size rule</subject><subject>Time series</subject><subject>warming</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc2KFDEURoMozjDOwheQoCsXPZNUkkpqI0jT_sCAIroOqZtbdsaupEzSSu98BJ_RJ7HKHodxYTYJ5HDu_fgIeczZBWesuURAcdG1Rt0jpw2TaqW1MvfvvE_IeSnXbD4tayTTD8mJaFspNZOn5P0HNwVPEdKvHz-nLcZUD1MAOiD63sEX6qKndYu04jhhdnWfkWYsU4oFaRpoH9LoSqH-EN0YoDwiDwa3K3h-c5-RT682H9dvVlfvXr9dv7xawTxYrXqjADXvpG_mAJ7jMKDSzknddAAghXBa9b5Xbe_8oEEhNw3v-SBaxZ0y4oy8OHqnfT-iB4w1u52dchhdPtjkgv33J4at_Zy-2c4I3mkxC54eBanUYAuEirCFFCNCtbxjxpgFenYzJaeveyzVXqd9jnMw2-g5h-6kWqjnRwpyKiXjcLsGZ3YpyS4l2aWkmX1yd-9b8m8lM3B5BL6HHR7-b7Kb9Ub8Uf4GLGed4A</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Gibert, Jean P.</creator><creator>Wieczynski, Daniel J.</creator><creator>Han, Ze‐Yi</creator><creator>Yammine, Andrea</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4090-2677</orcidid><orcidid>https://orcid.org/0000-0001-5552-8636</orcidid><orcidid>https://orcid.org/0000-0002-5083-6418</orcidid><orcidid>https://orcid.org/0000000155528636</orcidid><orcidid>https://orcid.org/0000000340902677</orcidid><orcidid>https://orcid.org/0000000250836418</orcidid></search><sort><creationdate>202301</creationdate><title>Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics</title><author>Gibert, Jean P. ; Wieczynski, Daniel J. ; Han, Ze‐Yi ; Yammine, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4705-b85ce7194d2eced1effe57aa4729ccc433a75bdb56badf7c5e1821b1f3651a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autecology</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carrying capacity</topic><topic>Climate change</topic><topic>Density</topic><topic>Dynamics</topic><topic>Ecological effects</topic><topic>Ecosystems</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Evolutionary Biology</topic><topic>Functional Ecology</topic><topic>Global Change Ecology</topic><topic>Global climate</topic><topic>Humidity</topic><topic>Influence</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Population</topic><topic>Population dynamics</topic><topic>Predation</topic><topic>Respiration</topic><topic>temperature</topic><topic>Temperature effects</topic><topic>temperature size rule</topic><topic>Time series</topic><topic>warming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibert, Jean P.</creatorcontrib><creatorcontrib>Wieczynski, Daniel J.</creatorcontrib><creatorcontrib>Han, Ze‐Yi</creatorcontrib><creatorcontrib>Yammine, Andrea</creatorcontrib><creatorcontrib>Duke Univ., Durham, NC (United States)</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibert, Jean P.</au><au>Wieczynski, Daniel J.</au><au>Han, Ze‐Yi</au><au>Yammine, Andrea</au><aucorp>Duke Univ., Durham, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>e9685</spage><epage>n/a</epage><pages>e9685-n/a</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Biomass dynamics capture information on population dynamics and ecosystem‐level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time‐series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment‐dependent eco‐phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures. We show that temperature and temperature fluctuations influence biomass dynamics through distinct effects on body size and density.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36644704</pmid><doi>10.1002/ece3.9685</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4090-2677</orcidid><orcidid>https://orcid.org/0000-0001-5552-8636</orcidid><orcidid>https://orcid.org/0000-0002-5083-6418</orcidid><orcidid>https://orcid.org/0000000155528636</orcidid><orcidid>https://orcid.org/0000000340902677</orcidid><orcidid>https://orcid.org/0000000250836418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-7758
ispartof Ecology and evolution, 2023-01, Vol.13 (1), p.e9685-n/a
issn 2045-7758
2045-7758
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9831973
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Autecology
Biomass
Carbon
Carrying capacity
Climate change
Density
Dynamics
Ecological effects
Ecosystems
ENVIRONMENTAL SCIENCES
Environmental Sciences & Ecology
Evolutionary Biology
Functional Ecology
Global Change Ecology
Global climate
Humidity
Influence
Laboratories
Metabolism
Microorganisms
Population
Population dynamics
Predation
Respiration
temperature
Temperature effects
temperature size rule
Time series
warming
title Rapid eco‐phenotypic feedback and the temperature response of biomass dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20eco%E2%80%90phenotypic%20feedback%20and%20the%20temperature%20response%20of%20biomass%20dynamics&rft.jtitle=Ecology%20and%20evolution&rft.au=Gibert,%20Jean%20P.&rft.aucorp=Duke%20Univ.,%20Durham,%20NC%20(United%20States)&rft.date=2023-01&rft.volume=13&rft.issue=1&rft.spage=e9685&rft.epage=n/a&rft.pages=e9685-n/a&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.9685&rft_dat=%3Cproquest_pubme%3E2770579453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770579453&rft_id=info:pmid/36644704&rfr_iscdi=true