Metabolic engineering of p-hydroxybenzoate in poplar lignin

Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2023-01, Vol.21 (1), p.176-188
Hauptverfasser: Mottiar, Yaseen, Karlen, Steven D, Goacher, Robyn E, Ralph, John, Mansfield, Shawn D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1
container_start_page 176
container_title Plant biotechnology journal
container_volume 21
creator Mottiar, Yaseen
Karlen, Steven D
Goacher, Robyn E
Ralph, John
Mansfield, Shawn D
description Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.
doi_str_mv 10.1111/pbi.13935
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718639925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-1cd46a13b6367002b2f34ec6b444eff314c5494be6782ac4d9f1079e1ea5b3343</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoWqsL_4AMutHF1MljMg2CIMUXVNzoOiTpnTYyTcZkKtZfb7Ra1GSRC_k45957EDrAxQCnc9ZqO8BU0HID9TDjVV7xkmyua8Z20G6Mz0VBMC_5NtqhHKcrih46v4dOad9Yk4GbWgcQrJtmvs7afLacBP-21ODeveogsy5rfduokDV26qzbQ1u1aiLsf7999HR99Ti6zccPN3ejy3FumOBdjs2EcYWp5pRXqQdNasrAcM0Yg7qmmJmSCaaBV0OiDJuIGheVAAyq1JQy2kcXK912oecwMeC6oBrZBjtXYSm9svLvj7MzOfWvUgyJYAVJAkcrAR87K6OxHZiZ8c6B6SQeCioIT9DJt0vwLwuInZzbaKBplAO_iJJUeMipEKRM6PE_9Nkvgks7SBQnRZqy_HQ9XVEm-BgD1OuOcSE_c5MpN_mVW2IPf4-4Jn-Coh_pqZKG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762070052</pqid></control><display><type>article</type><title>Metabolic engineering of p-hydroxybenzoate in poplar lignin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Mottiar, Yaseen ; Karlen, Steven D ; Goacher, Robyn E ; Ralph, John ; Mansfield, Shawn D</creator><creatorcontrib>Mottiar, Yaseen ; Karlen, Steven D ; Goacher, Robyn E ; Ralph, John ; Mansfield, Shawn D ; Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States)</creatorcontrib><description>Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13935</identifier><identifier>PMID: 36161690</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>4-hydroxybenzoic acid ; Acids ; BASIC BIOLOGICAL SCIENCES ; Biomass ; Biosynthesis ; Cell Wall - metabolism ; Cell walls ; cell-wall-bound phenolics ; designer lignins ; Enzymes ; ester-linked pendent groups ; Esters ; Fibers ; Hardwoods ; Hydroxybenzoates - analysis ; Hydroxybenzoates - metabolism ; Lignin ; Lignin - metabolism ; lignin engineering ; Mass spectrometry ; Mass spectroscopy ; Metabolic Engineering ; Metabolism ; Metabolites ; Parabens - analysis ; Parabens - metabolism ; Phenols ; Plastids ; Polymerization ; Polymers ; Poplar ; Populus - genetics ; Populus - metabolism ; Pyruvic acid ; Saccharification ; Substrates ; Trees ; Trees - genetics ; Wood - metabolism ; Xylem</subject><ispartof>Plant biotechnology journal, 2023-01, Vol.21 (1), p.176-188</ispartof><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-1cd46a13b6367002b2f34ec6b444eff314c5494be6782ac4d9f1079e1ea5b3343</citedby><cites>FETCH-LOGICAL-c496t-1cd46a13b6367002b2f34ec6b444eff314c5494be6782ac4d9f1079e1ea5b3343</cites><orcidid>0000-0002-2044-8895 ; 0000-0002-4106-6159 ; 0000-0002-6093-4521 ; 0000-0001-7863-4888 ; 0000-0002-0175-554X ; 0000000241066159 ; 0000000260934521 ; 0000000220448895 ; 0000000178634888 ; 000000020175554X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36161690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1893926$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mottiar, Yaseen</creatorcontrib><creatorcontrib>Karlen, Steven D</creatorcontrib><creatorcontrib>Goacher, Robyn E</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Mansfield, Shawn D</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States)</creatorcontrib><title>Metabolic engineering of p-hydroxybenzoate in poplar lignin</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.</description><subject>4-hydroxybenzoic acid</subject><subject>Acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>cell-wall-bound phenolics</subject><subject>designer lignins</subject><subject>Enzymes</subject><subject>ester-linked pendent groups</subject><subject>Esters</subject><subject>Fibers</subject><subject>Hardwoods</subject><subject>Hydroxybenzoates - analysis</subject><subject>Hydroxybenzoates - metabolism</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>lignin engineering</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolic Engineering</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Parabens - analysis</subject><subject>Parabens - metabolism</subject><subject>Phenols</subject><subject>Plastids</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Poplar</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Pyruvic acid</subject><subject>Saccharification</subject><subject>Substrates</subject><subject>Trees</subject><subject>Trees - genetics</subject><subject>Wood - metabolism</subject><subject>Xylem</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUtLAzEUhYMoWqsL_4AMutHF1MljMg2CIMUXVNzoOiTpnTYyTcZkKtZfb7Ra1GSRC_k45957EDrAxQCnc9ZqO8BU0HID9TDjVV7xkmyua8Z20G6Mz0VBMC_5NtqhHKcrih46v4dOad9Yk4GbWgcQrJtmvs7afLacBP-21ODeveogsy5rfduokDV26qzbQ1u1aiLsf7999HR99Ti6zccPN3ejy3FumOBdjs2EcYWp5pRXqQdNasrAcM0Yg7qmmJmSCaaBV0OiDJuIGheVAAyq1JQy2kcXK912oecwMeC6oBrZBjtXYSm9svLvj7MzOfWvUgyJYAVJAkcrAR87K6OxHZiZ8c6B6SQeCioIT9DJt0vwLwuInZzbaKBplAO_iJJUeMipEKRM6PE_9Nkvgks7SBQnRZqy_HQ9XVEm-BgD1OuOcSE_c5MpN_mVW2IPf4-4Jn-Coh_pqZKG</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mottiar, Yaseen</creator><creator>Karlen, Steven D</creator><creator>Goacher, Robyn E</creator><creator>Ralph, John</creator><creator>Mansfield, Shawn D</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2044-8895</orcidid><orcidid>https://orcid.org/0000-0002-4106-6159</orcidid><orcidid>https://orcid.org/0000-0002-6093-4521</orcidid><orcidid>https://orcid.org/0000-0001-7863-4888</orcidid><orcidid>https://orcid.org/0000-0002-0175-554X</orcidid><orcidid>https://orcid.org/0000000241066159</orcidid><orcidid>https://orcid.org/0000000260934521</orcidid><orcidid>https://orcid.org/0000000220448895</orcidid><orcidid>https://orcid.org/0000000178634888</orcidid><orcidid>https://orcid.org/000000020175554X</orcidid></search><sort><creationdate>20230101</creationdate><title>Metabolic engineering of p-hydroxybenzoate in poplar lignin</title><author>Mottiar, Yaseen ; Karlen, Steven D ; Goacher, Robyn E ; Ralph, John ; Mansfield, Shawn D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-1cd46a13b6367002b2f34ec6b444eff314c5494be6782ac4d9f1079e1ea5b3343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4-hydroxybenzoic acid</topic><topic>Acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>cell-wall-bound phenolics</topic><topic>designer lignins</topic><topic>Enzymes</topic><topic>ester-linked pendent groups</topic><topic>Esters</topic><topic>Fibers</topic><topic>Hardwoods</topic><topic>Hydroxybenzoates - analysis</topic><topic>Hydroxybenzoates - metabolism</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>lignin engineering</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolic Engineering</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Parabens - analysis</topic><topic>Parabens - metabolism</topic><topic>Phenols</topic><topic>Plastids</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Poplar</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Pyruvic acid</topic><topic>Saccharification</topic><topic>Substrates</topic><topic>Trees</topic><topic>Trees - genetics</topic><topic>Wood - metabolism</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mottiar, Yaseen</creatorcontrib><creatorcontrib>Karlen, Steven D</creatorcontrib><creatorcontrib>Goacher, Robyn E</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Mansfield, Shawn D</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mottiar, Yaseen</au><au>Karlen, Steven D</au><au>Goacher, Robyn E</au><au>Ralph, John</au><au>Mansfield, Shawn D</au><aucorp>Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of p-hydroxybenzoate in poplar lignin</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>176</spage><epage>188</epage><pages>176-188</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36161690</pmid><doi>10.1111/pbi.13935</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2044-8895</orcidid><orcidid>https://orcid.org/0000-0002-4106-6159</orcidid><orcidid>https://orcid.org/0000-0002-6093-4521</orcidid><orcidid>https://orcid.org/0000-0001-7863-4888</orcidid><orcidid>https://orcid.org/0000-0002-0175-554X</orcidid><orcidid>https://orcid.org/0000000241066159</orcidid><orcidid>https://orcid.org/0000000260934521</orcidid><orcidid>https://orcid.org/0000000220448895</orcidid><orcidid>https://orcid.org/0000000178634888</orcidid><orcidid>https://orcid.org/000000020175554X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2023-01, Vol.21 (1), p.176-188
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829402
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects 4-hydroxybenzoic acid
Acids
BASIC BIOLOGICAL SCIENCES
Biomass
Biosynthesis
Cell Wall - metabolism
Cell walls
cell-wall-bound phenolics
designer lignins
Enzymes
ester-linked pendent groups
Esters
Fibers
Hardwoods
Hydroxybenzoates - analysis
Hydroxybenzoates - metabolism
Lignin
Lignin - metabolism
lignin engineering
Mass spectrometry
Mass spectroscopy
Metabolic Engineering
Metabolism
Metabolites
Parabens - analysis
Parabens - metabolism
Phenols
Plastids
Polymerization
Polymers
Poplar
Populus - genetics
Populus - metabolism
Pyruvic acid
Saccharification
Substrates
Trees
Trees - genetics
Wood - metabolism
Xylem
title Metabolic engineering of p-hydroxybenzoate in poplar lignin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20p-hydroxybenzoate%20in%20poplar%20lignin&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Mottiar,%20Yaseen&rft.aucorp=Great%20Lakes%20Bioenergy%20Research%20Center%20(GLBRC),%20Madison,%20WI%20(United%20States)&rft.date=2023-01-01&rft.volume=21&rft.issue=1&rft.spage=176&rft.epage=188&rft.pages=176-188&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13935&rft_dat=%3Cproquest_pubme%3E2718639925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762070052&rft_id=info:pmid/36161690&rfr_iscdi=true