Rewiring of the seed metabolome during Tartary buckwheat domestication
Summary Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a d...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2023-01, Vol.21 (1), p.150-164 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Plant biotechnology journal |
container_volume | 21 |
creator | Zhao, Hui He, Yuqi Zhang, Kaixuan Li, Shijuan Chen, Yong He, Ming He, Feng Gao, Bin Yang, Di Fan, Yu Zhu, Xuemei Yan, Mingli Giglioli‐Guivarc'h, Nathalie Hano, Christophe Fernie, Alisdair R. Georgiev, Milen I. Janovská, Dagmar Meglič, Vladimir Zhou, Meiliang |
description | Summary
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual‐purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome‐wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3‐MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP‐glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large‐scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat. |
doi_str_mv | 10.1111/pbi.13932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762071220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4772-6e114b32b59eb885c5e8e9c0ac1e7e1a848a7db3509c60a697b3cfd6d2cce3543</originalsourceid><addsrcrecordid>eNp1kUtPGzEUha0K1PBa9A9UI7Epi4AfM35sKlFUIFKkViisLdtzk5jOjFN7hoh_X4dAaJHqjS3fz-ee64PQJ4LPSV4XK-vPCVOMfkAHpORiLHhF93bnshyhw5QeMKaEV_wjGjFOSilkdYCu72Dto-8WRZgX_RKKBFAXLfTGhia0UNTDc3VmYm_iU2EH92u9BNMXda6m3jvT-9Ado_25aRKcvOxH6P76--zqdjz9cTO5upyOXSkEHXMgpLSM2kqBlbJyFUhQDhtHQAAxspRG1JZVWDmODVfCMjeveU2dA1aV7Ah93equBttC7aDro2n0Kvo2u9PBeP1vpfNLvQiPWkmqmCJZ4GwrsHz37PZyqjd3OFNScva4Yb-8NIvh95CH1a1PDprGdBCGpKkggivO1MbX6Tv0IQyxy1-RKU6xIJTit-YuhpQizHcOCNabJHVOUj8nmdnPf0-6I1-jy8DFFlj7Bp7-r6R_fptsJf8AhWKn7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762071220</pqid></control><display><type>article</type><title>Rewiring of the seed metabolome during Tartary buckwheat domestication</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhao, Hui ; He, Yuqi ; Zhang, Kaixuan ; Li, Shijuan ; Chen, Yong ; He, Ming ; He, Feng ; Gao, Bin ; Yang, Di ; Fan, Yu ; Zhu, Xuemei ; Yan, Mingli ; Giglioli‐Guivarc'h, Nathalie ; Hano, Christophe ; Fernie, Alisdair R. ; Georgiev, Milen I. ; Janovská, Dagmar ; Meglič, Vladimir ; Zhou, Meiliang</creator><creatorcontrib>Zhao, Hui ; He, Yuqi ; Zhang, Kaixuan ; Li, Shijuan ; Chen, Yong ; He, Ming ; He, Feng ; Gao, Bin ; Yang, Di ; Fan, Yu ; Zhu, Xuemei ; Yan, Mingli ; Giglioli‐Guivarc'h, Nathalie ; Hano, Christophe ; Fernie, Alisdair R. ; Georgiev, Milen I. ; Janovská, Dagmar ; Meglič, Vladimir ; Zhou, Meiliang</creatorcontrib><description>Summary
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual‐purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome‐wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3‐MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP‐glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large‐scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13932</identifier><identifier>PMID: 36148785</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Aspirin ; Buckwheat ; Disease resistance ; Domestication ; Emodin ; Fagopyrum - genetics ; Fagopyrum - metabolism ; Fagopyrum tataricum ; Flavonoids ; Food ; Functional foods & nutraceuticals ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Genetic diversity ; Genetic improvement ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Glucosyltransferase ; Glycosidases ; Glycoside hydrolase ; Glycosylation ; Grain ; Humans ; Hydrolase ; Hypertension ; Life Sciences ; Metabolism ; metabolite variation ; Metabolites ; Metabolome - genetics ; mGWAS ; Pharmaceuticals ; Phylogenetics ; Phylogeny ; Plant morphology ; Plant Proteins - metabolism ; Salicylic acid ; Seeds ; Seeds - genetics ; Traditional medicine</subject><ispartof>Plant biotechnology journal, 2023-01, Vol.21 (1), p.150-164</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4772-6e114b32b59eb885c5e8e9c0ac1e7e1a848a7db3509c60a697b3cfd6d2cce3543</citedby><cites>FETCH-LOGICAL-c4772-6e114b32b59eb885c5e8e9c0ac1e7e1a848a7db3509c60a697b3cfd6d2cce3543</cites><orcidid>0000-0001-9000-335X ; 0000-0001-5248-6135 ; 0000-0002-0175-5494 ; 0000-0001-5175-3684 ; 0000-0003-4261-5137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13932$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13932$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36148785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-tours.hal.science/hal-03918863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>He, Yuqi</creatorcontrib><creatorcontrib>Zhang, Kaixuan</creatorcontrib><creatorcontrib>Li, Shijuan</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, Di</creatorcontrib><creatorcontrib>Fan, Yu</creatorcontrib><creatorcontrib>Zhu, Xuemei</creatorcontrib><creatorcontrib>Yan, Mingli</creatorcontrib><creatorcontrib>Giglioli‐Guivarc'h, Nathalie</creatorcontrib><creatorcontrib>Hano, Christophe</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Georgiev, Milen I.</creatorcontrib><creatorcontrib>Janovská, Dagmar</creatorcontrib><creatorcontrib>Meglič, Vladimir</creatorcontrib><creatorcontrib>Zhou, Meiliang</creatorcontrib><title>Rewiring of the seed metabolome during Tartary buckwheat domestication</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual‐purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome‐wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3‐MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP‐glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large‐scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.</description><subject>Aspirin</subject><subject>Buckwheat</subject><subject>Disease resistance</subject><subject>Domestication</subject><subject>Emodin</subject><subject>Fagopyrum - genetics</subject><subject>Fagopyrum - metabolism</subject><subject>Fagopyrum tataricum</subject><subject>Flavonoids</subject><subject>Food</subject><subject>Functional foods & nutraceuticals</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glucosyltransferase</subject><subject>Glycosidases</subject><subject>Glycoside hydrolase</subject><subject>Glycosylation</subject><subject>Grain</subject><subject>Humans</subject><subject>Hydrolase</subject><subject>Hypertension</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>metabolite variation</subject><subject>Metabolites</subject><subject>Metabolome - genetics</subject><subject>mGWAS</subject><subject>Pharmaceuticals</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant morphology</subject><subject>Plant Proteins - metabolism</subject><subject>Salicylic acid</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Traditional medicine</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtPGzEUha0K1PBa9A9UI7Epi4AfM35sKlFUIFKkViisLdtzk5jOjFN7hoh_X4dAaJHqjS3fz-ee64PQJ4LPSV4XK-vPCVOMfkAHpORiLHhF93bnshyhw5QeMKaEV_wjGjFOSilkdYCu72Dto-8WRZgX_RKKBFAXLfTGhia0UNTDc3VmYm_iU2EH92u9BNMXda6m3jvT-9Ado_25aRKcvOxH6P76--zqdjz9cTO5upyOXSkEHXMgpLSM2kqBlbJyFUhQDhtHQAAxspRG1JZVWDmODVfCMjeveU2dA1aV7Ah93equBttC7aDro2n0Kvo2u9PBeP1vpfNLvQiPWkmqmCJZ4GwrsHz37PZyqjd3OFNScva4Yb-8NIvh95CH1a1PDprGdBCGpKkggivO1MbX6Tv0IQyxy1-RKU6xIJTit-YuhpQizHcOCNabJHVOUj8nmdnPf0-6I1-jy8DFFlj7Bp7-r6R_fptsJf8AhWKn7g</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zhao, Hui</creator><creator>He, Yuqi</creator><creator>Zhang, Kaixuan</creator><creator>Li, Shijuan</creator><creator>Chen, Yong</creator><creator>He, Ming</creator><creator>He, Feng</creator><creator>Gao, Bin</creator><creator>Yang, Di</creator><creator>Fan, Yu</creator><creator>Zhu, Xuemei</creator><creator>Yan, Mingli</creator><creator>Giglioli‐Guivarc'h, Nathalie</creator><creator>Hano, Christophe</creator><creator>Fernie, Alisdair R.</creator><creator>Georgiev, Milen I.</creator><creator>Janovská, Dagmar</creator><creator>Meglič, Vladimir</creator><creator>Zhou, Meiliang</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><orcidid>https://orcid.org/0000-0001-5248-6135</orcidid><orcidid>https://orcid.org/0000-0002-0175-5494</orcidid><orcidid>https://orcid.org/0000-0001-5175-3684</orcidid><orcidid>https://orcid.org/0000-0003-4261-5137</orcidid></search><sort><creationdate>202301</creationdate><title>Rewiring of the seed metabolome during Tartary buckwheat domestication</title><author>Zhao, Hui ; He, Yuqi ; Zhang, Kaixuan ; Li, Shijuan ; Chen, Yong ; He, Ming ; He, Feng ; Gao, Bin ; Yang, Di ; Fan, Yu ; Zhu, Xuemei ; Yan, Mingli ; Giglioli‐Guivarc'h, Nathalie ; Hano, Christophe ; Fernie, Alisdair R. ; Georgiev, Milen I. ; Janovská, Dagmar ; Meglič, Vladimir ; Zhou, Meiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4772-6e114b32b59eb885c5e8e9c0ac1e7e1a848a7db3509c60a697b3cfd6d2cce3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aspirin</topic><topic>Buckwheat</topic><topic>Disease resistance</topic><topic>Domestication</topic><topic>Emodin</topic><topic>Fagopyrum - genetics</topic><topic>Fagopyrum - metabolism</topic><topic>Fagopyrum tataricum</topic><topic>Flavonoids</topic><topic>Food</topic><topic>Functional foods & nutraceuticals</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glucosyltransferase</topic><topic>Glycosidases</topic><topic>Glycoside hydrolase</topic><topic>Glycosylation</topic><topic>Grain</topic><topic>Humans</topic><topic>Hydrolase</topic><topic>Hypertension</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>metabolite variation</topic><topic>Metabolites</topic><topic>Metabolome - genetics</topic><topic>mGWAS</topic><topic>Pharmaceuticals</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant morphology</topic><topic>Plant Proteins - metabolism</topic><topic>Salicylic acid</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Traditional medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>He, Yuqi</creatorcontrib><creatorcontrib>Zhang, Kaixuan</creatorcontrib><creatorcontrib>Li, Shijuan</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Yang, Di</creatorcontrib><creatorcontrib>Fan, Yu</creatorcontrib><creatorcontrib>Zhu, Xuemei</creatorcontrib><creatorcontrib>Yan, Mingli</creatorcontrib><creatorcontrib>Giglioli‐Guivarc'h, Nathalie</creatorcontrib><creatorcontrib>Hano, Christophe</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Georgiev, Milen I.</creatorcontrib><creatorcontrib>Janovská, Dagmar</creatorcontrib><creatorcontrib>Meglič, Vladimir</creatorcontrib><creatorcontrib>Zhou, Meiliang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hui</au><au>He, Yuqi</au><au>Zhang, Kaixuan</au><au>Li, Shijuan</au><au>Chen, Yong</au><au>He, Ming</au><au>He, Feng</au><au>Gao, Bin</au><au>Yang, Di</au><au>Fan, Yu</au><au>Zhu, Xuemei</au><au>Yan, Mingli</au><au>Giglioli‐Guivarc'h, Nathalie</au><au>Hano, Christophe</au><au>Fernie, Alisdair R.</au><au>Georgiev, Milen I.</au><au>Janovská, Dagmar</au><au>Meglič, Vladimir</au><au>Zhou, Meiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rewiring of the seed metabolome during Tartary buckwheat domestication</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2023-01</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>150</spage><epage>164</epage><pages>150-164</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual‐purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome‐wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3‐MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP‐glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large‐scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>36148785</pmid><doi>10.1111/pbi.13932</doi><tpages>164</tpages><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><orcidid>https://orcid.org/0000-0001-5248-6135</orcidid><orcidid>https://orcid.org/0000-0002-0175-5494</orcidid><orcidid>https://orcid.org/0000-0001-5175-3684</orcidid><orcidid>https://orcid.org/0000-0003-4261-5137</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2023-01, Vol.21 (1), p.150-164 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829391 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Aspirin Buckwheat Disease resistance Domestication Emodin Fagopyrum - genetics Fagopyrum - metabolism Fagopyrum tataricum Flavonoids Food Functional foods & nutraceuticals Gene expression Gene Expression Regulation, Plant - genetics Genetic diversity Genetic improvement Genome-wide association studies Genome-Wide Association Study Genomes Glucosyltransferase Glycosidases Glycoside hydrolase Glycosylation Grain Humans Hydrolase Hypertension Life Sciences Metabolism metabolite variation Metabolites Metabolome - genetics mGWAS Pharmaceuticals Phylogenetics Phylogeny Plant morphology Plant Proteins - metabolism Salicylic acid Seeds Seeds - genetics Traditional medicine |
title | Rewiring of the seed metabolome during Tartary buckwheat domestication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rewiring%20of%20the%20seed%20metabolome%20during%20Tartary%20buckwheat%20domestication&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Zhao,%20Hui&rft.date=2023-01&rft.volume=21&rft.issue=1&rft.spage=150&rft.epage=164&rft.pages=150-164&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13932&rft_dat=%3Cproquest_pubme%3E2762071220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762071220&rft_id=info:pmid/36148785&rfr_iscdi=true |