Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes

ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in obstetrics & gynecology 2022-10, Vol.60 (4), p.570-576
Hauptverfasser: van den Noort, F., Manzini, C., van der Vaart, C. H., van Limbeek, M. A. J., Slump, C. H., Grob, A. T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 570
container_title Ultrasound in obstetrics & gynecology
container_volume 60
creator van den Noort, F.
Manzini, C.
van der Vaart, C. H.
van Limbeek, M. A. J.
Slump, C. H.
Grob, A. T. M.
description ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes. Results The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement. Conclusions Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology. Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.
doi_str_mv 10.1002/uog.24810
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720086826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</originalsourceid><addsrcrecordid>eNp1kc9rFTEQx4Mo9tl68B-QBS962Hby42WTi1CK1kKhl_Yc8rLZ15Rs8txsWvrfO8-tRQueJpn58OE7DCEfKBxTAHZS8_aYCUXhFVlRIXULHaxfkxVoCW0nNTsg70q5AwApuHxLDrjoZCclX5FyWuc82jm4JvQ-zWEIDn85NTb1TfHbEZtLIw9NicH5_WMMKYw2NrfBzlj6gFhBqDQhNfNkU9n5KSSPsxrxX3JF3X2OdfTliLwZbCz-_VM9JDffv12f_Wgvr84vzk4vWycEh5Y7tRaOMcq46gAos0oPbgNOWWU1t9xTBb2g2q69slZvmOgYCMF4z7oeFYfk6-Ld1c3oe4ebTDaa3YTRp0eTbTD_TlK4Ndt8b7RiSiiJgs9Pgin_rL7MZgzF-Rht8rkWw9a6E5pSxhD99AK9y3VKuJ5hmAqUVGwv_LJQbsqlTH54DkPB7E9p8JTm9ymR_fh3-mfyz-0QOFmAhxD94_9N5ubqfFH-Am30qoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720086826</pqid></control><display><type>article</type><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</creator><creatorcontrib>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</creatorcontrib><description>ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes. Results The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement. Conclusions Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology. Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</description><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.24810</identifier><identifier>PMID: 34767663</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; automatic segmentation ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Diameters ; Female ; Gynecology ; Humans ; Imaging, Three-Dimensional - methods ; Learning algorithms ; levator hiatus ; Machine learning ; Obstetrics ; Original Paper ; Original Papers ; pelvic floor ; Pelvic Organ Prolapse - diagnostic imaging ; Pregnancy ; Segmentation ; transperineal ultrasound ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonography - methods ; Ultrasound ; urogenital hiatus</subject><ispartof>Ultrasound in obstetrics &amp; gynecology, 2022-10, Vol.60 (4), p.570-576</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2021 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</citedby><cites>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</cites><orcidid>0000-0003-0890-5368 ; 0000-0002-9998-1229 ; 0000-0003-4337-8962 ; 0000-0002-5265-7915 ; 0000-0003-1278-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.24810$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.24810$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Noort, F.</creatorcontrib><creatorcontrib>Manzini, C.</creatorcontrib><creatorcontrib>van der Vaart, C. H.</creatorcontrib><creatorcontrib>van Limbeek, M. A. J.</creatorcontrib><creatorcontrib>Slump, C. H.</creatorcontrib><creatorcontrib>Grob, A. T. M.</creatorcontrib><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><title>Ultrasound in obstetrics &amp; gynecology</title><addtitle>Ultrasound Obstet Gynecol</addtitle><description>ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes. Results The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement. Conclusions Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology. Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</description><subject>Algorithms</subject><subject>automatic segmentation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Diameters</subject><subject>Female</subject><subject>Gynecology</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Learning algorithms</subject><subject>levator hiatus</subject><subject>Machine learning</subject><subject>Obstetrics</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>pelvic floor</subject><subject>Pelvic Organ Prolapse - diagnostic imaging</subject><subject>Pregnancy</subject><subject>Segmentation</subject><subject>transperineal ultrasound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>urogenital hiatus</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9rFTEQx4Mo9tl68B-QBS962Hby42WTi1CK1kKhl_Yc8rLZ15Rs8txsWvrfO8-tRQueJpn58OE7DCEfKBxTAHZS8_aYCUXhFVlRIXULHaxfkxVoCW0nNTsg70q5AwApuHxLDrjoZCclX5FyWuc82jm4JvQ-zWEIDn85NTb1TfHbEZtLIw9NicH5_WMMKYw2NrfBzlj6gFhBqDQhNfNkU9n5KSSPsxrxX3JF3X2OdfTliLwZbCz-_VM9JDffv12f_Wgvr84vzk4vWycEh5Y7tRaOMcq46gAos0oPbgNOWWU1t9xTBb2g2q69slZvmOgYCMF4z7oeFYfk6-Ld1c3oe4ebTDaa3YTRp0eTbTD_TlK4Ndt8b7RiSiiJgs9Pgin_rL7MZgzF-Rht8rkWw9a6E5pSxhD99AK9y3VKuJ5hmAqUVGwv_LJQbsqlTH54DkPB7E9p8JTm9ymR_fh3-mfyz-0QOFmAhxD94_9N5ubqfFH-Am30qoc</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>van den Noort, F.</creator><creator>Manzini, C.</creator><creator>van der Vaart, C. H.</creator><creator>van Limbeek, M. A. J.</creator><creator>Slump, C. H.</creator><creator>Grob, A. T. M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0890-5368</orcidid><orcidid>https://orcid.org/0000-0002-9998-1229</orcidid><orcidid>https://orcid.org/0000-0003-4337-8962</orcidid><orcidid>https://orcid.org/0000-0002-5265-7915</orcidid><orcidid>https://orcid.org/0000-0003-1278-2815</orcidid></search><sort><creationdate>202210</creationdate><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><author>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>automatic segmentation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Diameters</topic><topic>Female</topic><topic>Gynecology</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Learning algorithms</topic><topic>levator hiatus</topic><topic>Machine learning</topic><topic>Obstetrics</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>pelvic floor</topic><topic>Pelvic Organ Prolapse - diagnostic imaging</topic><topic>Pregnancy</topic><topic>Segmentation</topic><topic>transperineal ultrasound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>urogenital hiatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Noort, F.</creatorcontrib><creatorcontrib>Manzini, C.</creatorcontrib><creatorcontrib>van der Vaart, C. H.</creatorcontrib><creatorcontrib>van Limbeek, M. A. J.</creatorcontrib><creatorcontrib>Slump, C. H.</creatorcontrib><creatorcontrib>Grob, A. T. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Noort, F.</au><au>Manzini, C.</au><au>van der Vaart, C. H.</au><au>van Limbeek, M. A. J.</au><au>Slump, C. H.</au><au>Grob, A. T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</atitle><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle><addtitle>Ultrasound Obstet Gynecol</addtitle><date>2022-10</date><risdate>2022</risdate><volume>60</volume><issue>4</issue><spage>570</spage><epage>576</epage><pages>570-576</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><abstract>ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes. Results The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement. Conclusions Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology. Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>34767663</pmid><doi>10.1002/uog.24810</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0890-5368</orcidid><orcidid>https://orcid.org/0000-0002-9998-1229</orcidid><orcidid>https://orcid.org/0000-0003-4337-8962</orcidid><orcidid>https://orcid.org/0000-0002-5265-7915</orcidid><orcidid>https://orcid.org/0000-0003-1278-2815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7692
ispartof Ultrasound in obstetrics & gynecology, 2022-10, Vol.60 (4), p.570-576
issn 0960-7692
1469-0705
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828486
source MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Algorithms
automatic segmentation
Correlation coefficient
Correlation coefficients
Deep learning
Diameters
Female
Gynecology
Humans
Imaging, Three-Dimensional - methods
Learning algorithms
levator hiatus
Machine learning
Obstetrics
Original Paper
Original Papers
pelvic floor
Pelvic Organ Prolapse - diagnostic imaging
Pregnancy
Segmentation
transperineal ultrasound
Ultrasonic imaging
Ultrasonic testing
Ultrasonography - methods
Ultrasound
urogenital hiatus
title Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20and%20segmentation%20of%20slice%20of%20minimal%20hiatal%20dimensions%20in%20transperineal%20ultrasound%20volumes&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=van%20den%20Noort,%20F.&rft.date=2022-10&rft.volume=60&rft.issue=4&rft.spage=570&rft.epage=576&rft.pages=570-576&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.24810&rft_dat=%3Cproquest_pubme%3E2720086826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720086826&rft_id=info:pmid/34767663&rfr_iscdi=true