Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes
ABSTRACT Objective To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes. Methods Manual selection of the SMHD and segmentation of the UH was performed in TPUS...
Gespeichert in:
Veröffentlicht in: | Ultrasound in obstetrics & gynecology 2022-10, Vol.60 (4), p.570-576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 570 |
container_title | Ultrasound in obstetrics & gynecology |
container_volume | 60 |
creator | van den Noort, F. Manzini, C. van der Vaart, C. H. van Limbeek, M. A. J. Slump, C. H. Grob, A. T. M. |
description | ABSTRACT
Objective
To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes.
Methods
Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes.
Results
The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement.
Conclusions
Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence. |
doi_str_mv | 10.1002/uog.24810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720086826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</originalsourceid><addsrcrecordid>eNp1kc9rFTEQx4Mo9tl68B-QBS962Hby42WTi1CK1kKhl_Yc8rLZ15Rs8txsWvrfO8-tRQueJpn58OE7DCEfKBxTAHZS8_aYCUXhFVlRIXULHaxfkxVoCW0nNTsg70q5AwApuHxLDrjoZCclX5FyWuc82jm4JvQ-zWEIDn85NTb1TfHbEZtLIw9NicH5_WMMKYw2NrfBzlj6gFhBqDQhNfNkU9n5KSSPsxrxX3JF3X2OdfTliLwZbCz-_VM9JDffv12f_Wgvr84vzk4vWycEh5Y7tRaOMcq46gAos0oPbgNOWWU1t9xTBb2g2q69slZvmOgYCMF4z7oeFYfk6-Ld1c3oe4ebTDaa3YTRp0eTbTD_TlK4Ndt8b7RiSiiJgs9Pgin_rL7MZgzF-Rht8rkWw9a6E5pSxhD99AK9y3VKuJ5hmAqUVGwv_LJQbsqlTH54DkPB7E9p8JTm9ymR_fh3-mfyz-0QOFmAhxD94_9N5ubqfFH-Am30qoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720086826</pqid></control><display><type>article</type><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><source>MEDLINE</source><source>Wiley Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</creator><creatorcontrib>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</creatorcontrib><description>ABSTRACT
Objective
To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes.
Methods
Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes.
Results
The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement.
Conclusions
Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</description><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.24810</identifier><identifier>PMID: 34767663</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; automatic segmentation ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Diameters ; Female ; Gynecology ; Humans ; Imaging, Three-Dimensional - methods ; Learning algorithms ; levator hiatus ; Machine learning ; Obstetrics ; Original Paper ; Original Papers ; pelvic floor ; Pelvic Organ Prolapse - diagnostic imaging ; Pregnancy ; Segmentation ; transperineal ultrasound ; Ultrasonic imaging ; Ultrasonic testing ; Ultrasonography - methods ; Ultrasound ; urogenital hiatus</subject><ispartof>Ultrasound in obstetrics & gynecology, 2022-10, Vol.60 (4), p.570-576</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</citedby><cites>FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</cites><orcidid>0000-0003-0890-5368 ; 0000-0002-9998-1229 ; 0000-0003-4337-8962 ; 0000-0002-5265-7915 ; 0000-0003-1278-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.24810$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.24810$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van den Noort, F.</creatorcontrib><creatorcontrib>Manzini, C.</creatorcontrib><creatorcontrib>van der Vaart, C. H.</creatorcontrib><creatorcontrib>van Limbeek, M. A. J.</creatorcontrib><creatorcontrib>Slump, C. H.</creatorcontrib><creatorcontrib>Grob, A. T. M.</creatorcontrib><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><title>Ultrasound in obstetrics & gynecology</title><addtitle>Ultrasound Obstet Gynecol</addtitle><description>ABSTRACT
Objective
To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes.
Methods
Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes.
Results
The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement.
Conclusions
Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</description><subject>Algorithms</subject><subject>automatic segmentation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Diameters</subject><subject>Female</subject><subject>Gynecology</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Learning algorithms</subject><subject>levator hiatus</subject><subject>Machine learning</subject><subject>Obstetrics</subject><subject>Original Paper</subject><subject>Original Papers</subject><subject>pelvic floor</subject><subject>Pelvic Organ Prolapse - diagnostic imaging</subject><subject>Pregnancy</subject><subject>Segmentation</subject><subject>transperineal ultrasound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>urogenital hiatus</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9rFTEQx4Mo9tl68B-QBS962Hby42WTi1CK1kKhl_Yc8rLZ15Rs8txsWvrfO8-tRQueJpn58OE7DCEfKBxTAHZS8_aYCUXhFVlRIXULHaxfkxVoCW0nNTsg70q5AwApuHxLDrjoZCclX5FyWuc82jm4JvQ-zWEIDn85NTb1TfHbEZtLIw9NicH5_WMMKYw2NrfBzlj6gFhBqDQhNfNkU9n5KSSPsxrxX3JF3X2OdfTliLwZbCz-_VM9JDffv12f_Wgvr84vzk4vWycEh5Y7tRaOMcq46gAos0oPbgNOWWU1t9xTBb2g2q69slZvmOgYCMF4z7oeFYfk6-Ld1c3oe4ebTDaa3YTRp0eTbTD_TlK4Ndt8b7RiSiiJgs9Pgin_rL7MZgzF-Rht8rkWw9a6E5pSxhD99AK9y3VKuJ5hmAqUVGwv_LJQbsqlTH54DkPB7E9p8JTm9ymR_fh3-mfyz-0QOFmAhxD94_9N5ubqfFH-Am30qoc</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>van den Noort, F.</creator><creator>Manzini, C.</creator><creator>van der Vaart, C. H.</creator><creator>van Limbeek, M. A. J.</creator><creator>Slump, C. H.</creator><creator>Grob, A. T. M.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0890-5368</orcidid><orcidid>https://orcid.org/0000-0002-9998-1229</orcidid><orcidid>https://orcid.org/0000-0003-4337-8962</orcidid><orcidid>https://orcid.org/0000-0002-5265-7915</orcidid><orcidid>https://orcid.org/0000-0003-1278-2815</orcidid></search><sort><creationdate>202210</creationdate><title>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</title><author>van den Noort, F. ; Manzini, C. ; van der Vaart, C. H. ; van Limbeek, M. A. J. ; Slump, C. H. ; Grob, A. T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-3c854c22123870012a89fcb0c8a8a93a3e180d419a5e8aa9b247204423d27d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>automatic segmentation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Diameters</topic><topic>Female</topic><topic>Gynecology</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Learning algorithms</topic><topic>levator hiatus</topic><topic>Machine learning</topic><topic>Obstetrics</topic><topic>Original Paper</topic><topic>Original Papers</topic><topic>pelvic floor</topic><topic>Pelvic Organ Prolapse - diagnostic imaging</topic><topic>Pregnancy</topic><topic>Segmentation</topic><topic>transperineal ultrasound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>urogenital hiatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Noort, F.</creatorcontrib><creatorcontrib>Manzini, C.</creatorcontrib><creatorcontrib>van der Vaart, C. H.</creatorcontrib><creatorcontrib>van Limbeek, M. A. J.</creatorcontrib><creatorcontrib>Slump, C. H.</creatorcontrib><creatorcontrib>Grob, A. T. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultrasound in obstetrics & gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Noort, F.</au><au>Manzini, C.</au><au>van der Vaart, C. H.</au><au>van Limbeek, M. A. J.</au><au>Slump, C. H.</au><au>Grob, A. T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes</atitle><jtitle>Ultrasound in obstetrics & gynecology</jtitle><addtitle>Ultrasound Obstet Gynecol</addtitle><date>2022-10</date><risdate>2022</risdate><volume>60</volume><issue>4</issue><spage>570</spage><epage>576</epage><pages>570-576</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><abstract>ABSTRACT
Objective
To develop and validate a tool for automatic selection of the slice of minimal hiatal dimensions (SMHD) and segmentation of the urogenital hiatus (UH) in transperineal ultrasound (TPUS) volumes.
Methods
Manual selection of the SMHD and segmentation of the UH was performed in TPUS volumes of 116 women with symptomatic pelvic organ prolapse (POP). These data were used to train two deep‐learning algorithms. The first algorithm was trained to provide an estimation of the position of the SMHD. Based on this estimation, a slice was selected and fed into the second algorithm, which performed automatic segmentation of the UH. From this segmentation, measurements of the UH area (UHA), anteroposterior diameter (APD) and coronal diameter (CD) were computed automatically. The mean absolute distance between manually and automatically selected SMHD, the overlap (dice similarity index (DSI)) between manual and automatic UH segmentation and the intraclass correlation coefficient (ICC) between manual and automatic UH measurements were assessed on a test set of 30 TPUS volumes.
Results
The mean absolute distance between manually and automatically selected SMHD was 0.20 cm. All DSI values between manual and automatic UH segmentations were above 0.85. The ICC values between manual and automatic UH measurements were 0.94 (95% CI, 0.87–0.97) for UHA, 0.92 (95% CI, 0.78–0.97) for APD and 0.82 (95% CI, 0.66–0.91) for CD, demonstrating excellent agreement.
Conclusions
Our deep‐learning algorithms allowed reliable automatic selection of the SMHD and UH segmentation in TPUS volumes of women with symptomatic POP. These algorithms can be implemented in the software of TPUS machines, thus reducing clinical analysis time and simplifying the examination of TPUS data for research and clinical purposes. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Linked article: There is a comment on this article by Chen et al. Click here to view the Correspondence.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>34767663</pmid><doi>10.1002/uog.24810</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0890-5368</orcidid><orcidid>https://orcid.org/0000-0002-9998-1229</orcidid><orcidid>https://orcid.org/0000-0003-4337-8962</orcidid><orcidid>https://orcid.org/0000-0002-5265-7915</orcidid><orcidid>https://orcid.org/0000-0003-1278-2815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7692 |
ispartof | Ultrasound in obstetrics & gynecology, 2022-10, Vol.60 (4), p.570-576 |
issn | 0960-7692 1469-0705 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9828486 |
source | MEDLINE; Wiley Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Algorithms automatic segmentation Correlation coefficient Correlation coefficients Deep learning Diameters Female Gynecology Humans Imaging, Three-Dimensional - methods Learning algorithms levator hiatus Machine learning Obstetrics Original Paper Original Papers pelvic floor Pelvic Organ Prolapse - diagnostic imaging Pregnancy Segmentation transperineal ultrasound Ultrasonic imaging Ultrasonic testing Ultrasonography - methods Ultrasound urogenital hiatus |
title | Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20identification%20and%20segmentation%20of%20slice%20of%20minimal%20hiatal%20dimensions%20in%20transperineal%20ultrasound%20volumes&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=van%20den%20Noort,%20F.&rft.date=2022-10&rft.volume=60&rft.issue=4&rft.spage=570&rft.epage=576&rft.pages=570-576&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.24810&rft_dat=%3Cproquest_pubme%3E2720086826%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720086826&rft_id=info:pmid/34767663&rfr_iscdi=true |