Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties

Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:3 Biotech 2023-02, Vol.13 (2), p.37-37, Article 37
Hauptverfasser: Ramappa, Venkatesh Kumar, Singh, Vandana, Srivastava, Devika, Kumar, Devarsh, Verma, Anshika, Verma, Darshika, Fatima, Eram, Chaudhary, Priyanka, Kumar, Umesh, Kumar, Dinesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 2
container_start_page 37
container_title 3 Biotech
container_volume 13
creator Ramappa, Venkatesh Kumar
Singh, Vandana
Srivastava, Devika
Kumar, Devarsh
Verma, Anshika
Verma, Darshika
Fatima, Eram
Chaudhary, Priyanka
Kumar, Umesh
Kumar, Dinesh
description Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1 H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus , E. coli , A. flavus , and A. brassicae . PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus . Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli . Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).
doi_str_mv 10.1007/s13205-022-03443-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153653552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEolXpC7BAltjMLAK-xE6yQUJVB5AGFYkisbN8OZlx8cTBTirmGXhpPE0ZLgvwxkc63_nPRX9RPCX4BcG4fpkIo5iXmNISs6piJX9QnFLS4pLXrHl4jOnnk-I8pRucHye8JfhxccKEYJSJ-rT4vlI6OqNGF3oUOrSbvIYY98iD6hB8G6MyI1q8X18uS6R6i0aVVETDNCiPgvNocf3haln6oCxYlJz_gjqnY3A9WnxcLdF2b2PYgE9z8RZczNHods7EoF0WGWIYII4O0pPiUad8gvP7_6z4tLq8vnhbrq_evLt4vS5NJdhYCs4w1VVF8zKm1dpYYQEstBxTWzXQqrZpOFBCaFdp6ARvmcHC4Lqrea0tOytezbrDpHdgDfR5Sy-H6HYq7mVQTv6Z6d1WbsKtbBsq6ppngcW9QAxfJ0ij3LlkwHvVQ5iSZISzPCXn9L8orQXHNcVNldHnf6E3YYp9vsSBojj3vqPoTOX7pRShO85NsDw4Q87OkNkZ8s4Z8jDws983Ppb89EEG2AyknOo3EH_1_ofsD-QEw-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762026784</pqid></control><display><type>article</type><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</creator><creatorcontrib>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</creatorcontrib><description>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1 H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus , E. coli , A. flavus , and A. brassicae . PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus . Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli . Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).</description><identifier>ISSN: 2190-572X</identifier><identifier>ISSN: 2190-5738</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-022-03443-5</identifier><identifier>PMID: 36632367</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Alternaria brassicae ; antibacterial properties ; Antifungal activity ; antifungal properties ; Antimicrobial agents ; Aspergillus flavus ; Biocompatibility ; biocomposites ; Bioinformatics ; Biomaterials ; Biomedical materials ; Biotechnology ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composition ; Conjugation ; E coli ; Escherichia coli ; fibroins ; Fourier transform infrared spectroscopy ; Fourier transforms ; Fungicides ; Hydrogels ; Infrared spectroscopy ; leaf extracts ; Leaves ; Metabolites ; mulberries ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Oil ; oils ; Original ; Original Article ; Penicillin ; Phase contrast ; Plant extracts ; pupae ; Scanning electron microscopy ; Silk ; Silk fibroin ; Staphylococcus aureus ; Stem Cells</subject><ispartof>3 Biotech, 2023-02, Vol.13 (2), p.37-37, Article 37</ispartof><rights>King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>King Abdulaziz City for Science and Technology 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</citedby><cites>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</cites><orcidid>0000-0001-5053-5175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826775/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826775/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36632367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramappa, Venkatesh Kumar</creatorcontrib><creatorcontrib>Singh, Vandana</creatorcontrib><creatorcontrib>Srivastava, Devika</creatorcontrib><creatorcontrib>Kumar, Devarsh</creatorcontrib><creatorcontrib>Verma, Anshika</creatorcontrib><creatorcontrib>Verma, Darshika</creatorcontrib><creatorcontrib>Fatima, Eram</creatorcontrib><creatorcontrib>Chaudhary, Priyanka</creatorcontrib><creatorcontrib>Kumar, Umesh</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1 H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus , E. coli , A. flavus , and A. brassicae . PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus . Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli . Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).</description><subject>Agriculture</subject><subject>Alternaria brassicae</subject><subject>antibacterial properties</subject><subject>Antifungal activity</subject><subject>antifungal properties</subject><subject>Antimicrobial agents</subject><subject>Aspergillus flavus</subject><subject>Biocompatibility</subject><subject>biocomposites</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Conjugation</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>fibroins</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Fungicides</subject><subject>Hydrogels</subject><subject>Infrared spectroscopy</subject><subject>leaf extracts</subject><subject>Leaves</subject><subject>Metabolites</subject><subject>mulberries</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Oil</subject><subject>oils</subject><subject>Original</subject><subject>Original Article</subject><subject>Penicillin</subject><subject>Phase contrast</subject><subject>Plant extracts</subject><subject>pupae</subject><subject>Scanning electron microscopy</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Staphylococcus aureus</subject><subject>Stem Cells</subject><issn>2190-572X</issn><issn>2190-5738</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkstu1DAUhiMEolXpC7BAltjMLAK-xE6yQUJVB5AGFYkisbN8OZlx8cTBTirmGXhpPE0ZLgvwxkc63_nPRX9RPCX4BcG4fpkIo5iXmNISs6piJX9QnFLS4pLXrHl4jOnnk-I8pRucHye8JfhxccKEYJSJ-rT4vlI6OqNGF3oUOrSbvIYY98iD6hB8G6MyI1q8X18uS6R6i0aVVETDNCiPgvNocf3haln6oCxYlJz_gjqnY3A9WnxcLdF2b2PYgE9z8RZczNHods7EoF0WGWIYII4O0pPiUad8gvP7_6z4tLq8vnhbrq_evLt4vS5NJdhYCs4w1VVF8zKm1dpYYQEstBxTWzXQqrZpOFBCaFdp6ARvmcHC4Lqrea0tOytezbrDpHdgDfR5Sy-H6HYq7mVQTv6Z6d1WbsKtbBsq6ppngcW9QAxfJ0ij3LlkwHvVQ5iSZISzPCXn9L8orQXHNcVNldHnf6E3YYp9vsSBojj3vqPoTOX7pRShO85NsDw4Q87OkNkZ8s4Z8jDws983Ppb89EEG2AyknOo3EH_1_ofsD-QEw-g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ramappa, Venkatesh Kumar</creator><creator>Singh, Vandana</creator><creator>Srivastava, Devika</creator><creator>Kumar, Devarsh</creator><creator>Verma, Anshika</creator><creator>Verma, Darshika</creator><creator>Fatima, Eram</creator><creator>Chaudhary, Priyanka</creator><creator>Kumar, Umesh</creator><creator>Kumar, Dinesh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5053-5175</orcidid></search><sort><creationdate>20230201</creationdate><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><author>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Alternaria brassicae</topic><topic>antibacterial properties</topic><topic>Antifungal activity</topic><topic>antifungal properties</topic><topic>Antimicrobial agents</topic><topic>Aspergillus flavus</topic><topic>Biocompatibility</topic><topic>biocomposites</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Conjugation</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>fibroins</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Fungicides</topic><topic>Hydrogels</topic><topic>Infrared spectroscopy</topic><topic>leaf extracts</topic><topic>Leaves</topic><topic>Metabolites</topic><topic>mulberries</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Oil</topic><topic>oils</topic><topic>Original</topic><topic>Original Article</topic><topic>Penicillin</topic><topic>Phase contrast</topic><topic>Plant extracts</topic><topic>pupae</topic><topic>Scanning electron microscopy</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Staphylococcus aureus</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramappa, Venkatesh Kumar</creatorcontrib><creatorcontrib>Singh, Vandana</creatorcontrib><creatorcontrib>Srivastava, Devika</creatorcontrib><creatorcontrib>Kumar, Devarsh</creatorcontrib><creatorcontrib>Verma, Anshika</creatorcontrib><creatorcontrib>Verma, Darshika</creatorcontrib><creatorcontrib>Fatima, Eram</creatorcontrib><creatorcontrib>Chaudhary, Priyanka</creatorcontrib><creatorcontrib>Kumar, Umesh</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramappa, Venkatesh Kumar</au><au>Singh, Vandana</au><au>Srivastava, Devika</au><au>Kumar, Devarsh</au><au>Verma, Anshika</au><au>Verma, Darshika</au><au>Fatima, Eram</au><au>Chaudhary, Priyanka</au><au>Kumar, Umesh</au><au>Kumar, Dinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>2190-572X</issn><issn>2190-5738</issn><eissn>2190-5738</eissn><abstract>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition, 1 H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against S. aureus , E. coli , A. flavus , and A. brassicae . PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the S. aureus and E. coli activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion. S. aureus could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing E. coli growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against S. aureus . Furthermore, at a dosage of 300 g/ml, TPO inhibited both S. aureus and E. coli . Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against A. flavus at all tested concentrations (100, 200, and 300 g/ml).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36632367</pmid><doi>10.1007/s13205-022-03443-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5053-5175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-572X
ispartof 3 Biotech, 2023-02, Vol.13 (2), p.37-37, Article 37
issn 2190-572X
2190-5738
2190-5738
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826775
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Agriculture
Alternaria brassicae
antibacterial properties
Antifungal activity
antifungal properties
Antimicrobial agents
Aspergillus flavus
Biocompatibility
biocomposites
Bioinformatics
Biomaterials
Biomedical materials
Biotechnology
Cancer Research
Chemistry
Chemistry and Materials Science
Composite materials
Composition
Conjugation
E coli
Escherichia coli
fibroins
Fourier transform infrared spectroscopy
Fourier transforms
Fungicides
Hydrogels
Infrared spectroscopy
leaf extracts
Leaves
Metabolites
mulberries
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Oil
oils
Original
Original Article
Penicillin
Phase contrast
Plant extracts
pupae
Scanning electron microscopy
Silk
Silk fibroin
Staphylococcus aureus
Stem Cells
title Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20mulberry%20leaf%20extract%20(MLE)-%20and%20tasar%20pupal%20oil%20(TPO)-loaded%20silk%20fibroin%20(SF)%20hydrogels%20and%20their%20antimicrobial%20properties&rft.jtitle=3%20Biotech&rft.au=Ramappa,%20Venkatesh%20Kumar&rft.date=2023-02-01&rft.volume=13&rft.issue=2&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-022-03443-5&rft_dat=%3Cproquest_pubme%3E3153653552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762026784&rft_id=info:pmid/36632367&rfr_iscdi=true