Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties
Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO)...
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2023-02, Vol.13 (2), p.37-37, Article 37 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 2 |
container_start_page | 37 |
container_title | 3 Biotech |
container_volume | 13 |
creator | Ramappa, Venkatesh Kumar Singh, Vandana Srivastava, Devika Kumar, Devarsh Verma, Anshika Verma, Darshika Fatima, Eram Chaudhary, Priyanka Kumar, Umesh Kumar, Dinesh |
description | Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition,
1
H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against
S. aureus
,
E. coli
,
A. flavus
, and
A. brassicae
. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the
S. aureus
and
E. coli
activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion.
S. aureus
could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing
E. coli
growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against
S. aureus
. Furthermore, at a dosage of 300 g/ml, TPO inhibited both
S. aureus
and
E. coli
. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against
A. flavus
at all tested concentrations (100, 200, and 300 g/ml). |
doi_str_mv | 10.1007/s13205-022-03443-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153653552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</originalsourceid><addsrcrecordid>eNqFkstu1DAUhiMEolXpC7BAltjMLAK-xE6yQUJVB5AGFYkisbN8OZlx8cTBTirmGXhpPE0ZLgvwxkc63_nPRX9RPCX4BcG4fpkIo5iXmNISs6piJX9QnFLS4pLXrHl4jOnnk-I8pRucHye8JfhxccKEYJSJ-rT4vlI6OqNGF3oUOrSbvIYY98iD6hB8G6MyI1q8X18uS6R6i0aVVETDNCiPgvNocf3haln6oCxYlJz_gjqnY3A9WnxcLdF2b2PYgE9z8RZczNHods7EoF0WGWIYII4O0pPiUad8gvP7_6z4tLq8vnhbrq_evLt4vS5NJdhYCs4w1VVF8zKm1dpYYQEstBxTWzXQqrZpOFBCaFdp6ARvmcHC4Lqrea0tOytezbrDpHdgDfR5Sy-H6HYq7mVQTv6Z6d1WbsKtbBsq6ppngcW9QAxfJ0ij3LlkwHvVQ5iSZISzPCXn9L8orQXHNcVNldHnf6E3YYp9vsSBojj3vqPoTOX7pRShO85NsDw4Q87OkNkZ8s4Z8jDws983Ppb89EEG2AyknOo3EH_1_ofsD-QEw-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762026784</pqid></control><display><type>article</type><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</creator><creatorcontrib>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</creatorcontrib><description>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition,
1
H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against
S. aureus
,
E. coli
,
A. flavus
, and
A. brassicae
. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the
S. aureus
and
E. coli
activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion.
S. aureus
could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing
E. coli
growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against
S. aureus
. Furthermore, at a dosage of 300 g/ml, TPO inhibited both
S. aureus
and
E. coli
. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against
A. flavus
at all tested concentrations (100, 200, and 300 g/ml).</description><identifier>ISSN: 2190-572X</identifier><identifier>ISSN: 2190-5738</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-022-03443-5</identifier><identifier>PMID: 36632367</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agriculture ; Alternaria brassicae ; antibacterial properties ; Antifungal activity ; antifungal properties ; Antimicrobial agents ; Aspergillus flavus ; Biocompatibility ; biocomposites ; Bioinformatics ; Biomaterials ; Biomedical materials ; Biotechnology ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composition ; Conjugation ; E coli ; Escherichia coli ; fibroins ; Fourier transform infrared spectroscopy ; Fourier transforms ; Fungicides ; Hydrogels ; Infrared spectroscopy ; leaf extracts ; Leaves ; Metabolites ; mulberries ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Oil ; oils ; Original ; Original Article ; Penicillin ; Phase contrast ; Plant extracts ; pupae ; Scanning electron microscopy ; Silk ; Silk fibroin ; Staphylococcus aureus ; Stem Cells</subject><ispartof>3 Biotech, 2023-02, Vol.13 (2), p.37-37, Article 37</ispartof><rights>King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>King Abdulaziz City for Science and Technology 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</citedby><cites>FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</cites><orcidid>0000-0001-5053-5175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826775/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826775/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36632367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramappa, Venkatesh Kumar</creatorcontrib><creatorcontrib>Singh, Vandana</creatorcontrib><creatorcontrib>Srivastava, Devika</creatorcontrib><creatorcontrib>Kumar, Devarsh</creatorcontrib><creatorcontrib>Verma, Anshika</creatorcontrib><creatorcontrib>Verma, Darshika</creatorcontrib><creatorcontrib>Fatima, Eram</creatorcontrib><creatorcontrib>Chaudhary, Priyanka</creatorcontrib><creatorcontrib>Kumar, Umesh</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition,
1
H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against
S. aureus
,
E. coli
,
A. flavus
, and
A. brassicae
. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the
S. aureus
and
E. coli
activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion.
S. aureus
could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing
E. coli
growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against
S. aureus
. Furthermore, at a dosage of 300 g/ml, TPO inhibited both
S. aureus
and
E. coli
. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against
A. flavus
at all tested concentrations (100, 200, and 300 g/ml).</description><subject>Agriculture</subject><subject>Alternaria brassicae</subject><subject>antibacterial properties</subject><subject>Antifungal activity</subject><subject>antifungal properties</subject><subject>Antimicrobial agents</subject><subject>Aspergillus flavus</subject><subject>Biocompatibility</subject><subject>biocomposites</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Conjugation</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>fibroins</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Fungicides</subject><subject>Hydrogels</subject><subject>Infrared spectroscopy</subject><subject>leaf extracts</subject><subject>Leaves</subject><subject>Metabolites</subject><subject>mulberries</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Oil</subject><subject>oils</subject><subject>Original</subject><subject>Original Article</subject><subject>Penicillin</subject><subject>Phase contrast</subject><subject>Plant extracts</subject><subject>pupae</subject><subject>Scanning electron microscopy</subject><subject>Silk</subject><subject>Silk fibroin</subject><subject>Staphylococcus aureus</subject><subject>Stem Cells</subject><issn>2190-572X</issn><issn>2190-5738</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkstu1DAUhiMEolXpC7BAltjMLAK-xE6yQUJVB5AGFYkisbN8OZlx8cTBTirmGXhpPE0ZLgvwxkc63_nPRX9RPCX4BcG4fpkIo5iXmNISs6piJX9QnFLS4pLXrHl4jOnnk-I8pRucHye8JfhxccKEYJSJ-rT4vlI6OqNGF3oUOrSbvIYY98iD6hB8G6MyI1q8X18uS6R6i0aVVETDNCiPgvNocf3haln6oCxYlJz_gjqnY3A9WnxcLdF2b2PYgE9z8RZczNHods7EoF0WGWIYII4O0pPiUad8gvP7_6z4tLq8vnhbrq_evLt4vS5NJdhYCs4w1VVF8zKm1dpYYQEstBxTWzXQqrZpOFBCaFdp6ARvmcHC4Lqrea0tOytezbrDpHdgDfR5Sy-H6HYq7mVQTv6Z6d1WbsKtbBsq6ppngcW9QAxfJ0ij3LlkwHvVQ5iSZISzPCXn9L8orQXHNcVNldHnf6E3YYp9vsSBojj3vqPoTOX7pRShO85NsDw4Q87OkNkZ8s4Z8jDws983Ppb89EEG2AyknOo3EH_1_ofsD-QEw-g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ramappa, Venkatesh Kumar</creator><creator>Singh, Vandana</creator><creator>Srivastava, Devika</creator><creator>Kumar, Devarsh</creator><creator>Verma, Anshika</creator><creator>Verma, Darshika</creator><creator>Fatima, Eram</creator><creator>Chaudhary, Priyanka</creator><creator>Kumar, Umesh</creator><creator>Kumar, Dinesh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5053-5175</orcidid></search><sort><creationdate>20230201</creationdate><title>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</title><author>Ramappa, Venkatesh Kumar ; Singh, Vandana ; Srivastava, Devika ; Kumar, Devarsh ; Verma, Anshika ; Verma, Darshika ; Fatima, Eram ; Chaudhary, Priyanka ; Kumar, Umesh ; Kumar, Dinesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-65302b442591c9bbcd6deede9502d48e9a9885e2112f4bef6593c06c07f757bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Alternaria brassicae</topic><topic>antibacterial properties</topic><topic>Antifungal activity</topic><topic>antifungal properties</topic><topic>Antimicrobial agents</topic><topic>Aspergillus flavus</topic><topic>Biocompatibility</topic><topic>biocomposites</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Conjugation</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>fibroins</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Fungicides</topic><topic>Hydrogels</topic><topic>Infrared spectroscopy</topic><topic>leaf extracts</topic><topic>Leaves</topic><topic>Metabolites</topic><topic>mulberries</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Oil</topic><topic>oils</topic><topic>Original</topic><topic>Original Article</topic><topic>Penicillin</topic><topic>Phase contrast</topic><topic>Plant extracts</topic><topic>pupae</topic><topic>Scanning electron microscopy</topic><topic>Silk</topic><topic>Silk fibroin</topic><topic>Staphylococcus aureus</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramappa, Venkatesh Kumar</creatorcontrib><creatorcontrib>Singh, Vandana</creatorcontrib><creatorcontrib>Srivastava, Devika</creatorcontrib><creatorcontrib>Kumar, Devarsh</creatorcontrib><creatorcontrib>Verma, Anshika</creatorcontrib><creatorcontrib>Verma, Darshika</creatorcontrib><creatorcontrib>Fatima, Eram</creatorcontrib><creatorcontrib>Chaudhary, Priyanka</creatorcontrib><creatorcontrib>Kumar, Umesh</creatorcontrib><creatorcontrib>Kumar, Dinesh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramappa, Venkatesh Kumar</au><au>Singh, Vandana</au><au>Srivastava, Devika</au><au>Kumar, Devarsh</au><au>Verma, Anshika</au><au>Verma, Darshika</au><au>Fatima, Eram</au><au>Chaudhary, Priyanka</au><au>Kumar, Umesh</au><au>Kumar, Dinesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>2190-572X</issn><issn>2190-5738</issn><eissn>2190-5738</eissn><abstract>Biocomposites have gained tremendous advantages over synthetic composites due to their biocompatibility, sustainable degradation, and ability to easily combine with other substances. In the present study, we have prepared silk fibroin (SF) hydrogel, mulberry leaf extract (MLE), tasar pupal oil (TPO), and their composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, and characterized them by using a phase contrast microscope (PCM), scanning electron microscope (SEM) SEM- EDX, and Fourier transform infrared spectroscopy (FTIR). In addition,
1
H-NMR was used for profiling of mulberry leaf extract and GC–MS was used to find tasar pupal oil composition. Further, the disc diffusion method evaluated their antimicrobial activities against
S. aureus
,
E. coli
,
A. flavus
, and
A. brassicae
. PCM, SEM, and FTIR results validated the conjugation of MLE and SF hydrogel composite; 1H-NMR confirmed the 41 metabolites in MLE, and GC–MS established the composition of tasar pupal oil. Since both composites, such as TPO-loaded SF hydrogel and MLE-loaded SF hydrogel, reduced the
S. aureus
and
E. coli
activities at all tested concentrations, the antibacterial results were unambiguous in their conclusion.
S. aureus
could only be inhibited by SF hydrogel at a high concentration (300 g/ml), despite suppressing
E. coli
growth at all tested concentrations. At 300 g/ml, MLE demonstrated antibacterial action against
S. aureus
. Furthermore, at a dosage of 300 g/ml, TPO inhibited both
S. aureus
and
E. coli
. Both mulberry leaf extract (at 200 and 300 g/ml) and the MLE-loaded SF hydrogel composite displayed antifungal activity against
A. flavus
at all tested concentrations (100, 200, and 300 g/ml).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36632367</pmid><doi>10.1007/s13205-022-03443-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5053-5175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2023-02, Vol.13 (2), p.37-37, Article 37 |
issn | 2190-572X 2190-5738 2190-5738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9826775 |
source | SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Agriculture Alternaria brassicae antibacterial properties Antifungal activity antifungal properties Antimicrobial agents Aspergillus flavus Biocompatibility biocomposites Bioinformatics Biomaterials Biomedical materials Biotechnology Cancer Research Chemistry Chemistry and Materials Science Composite materials Composition Conjugation E coli Escherichia coli fibroins Fourier transform infrared spectroscopy Fourier transforms Fungicides Hydrogels Infrared spectroscopy leaf extracts Leaves Metabolites mulberries NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Oil oils Original Original Article Penicillin Phase contrast Plant extracts pupae Scanning electron microscopy Silk Silk fibroin Staphylococcus aureus Stem Cells |
title | Fabrication of mulberry leaf extract (MLE)- and tasar pupal oil (TPO)-loaded silk fibroin (SF) hydrogels and their antimicrobial properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20mulberry%20leaf%20extract%20(MLE)-%20and%20tasar%20pupal%20oil%20(TPO)-loaded%20silk%20fibroin%20(SF)%20hydrogels%20and%20their%20antimicrobial%20properties&rft.jtitle=3%20Biotech&rft.au=Ramappa,%20Venkatesh%20Kumar&rft.date=2023-02-01&rft.volume=13&rft.issue=2&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-022-03443-5&rft_dat=%3Cproquest_pubme%3E3153653552%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762026784&rft_id=info:pmid/36632367&rfr_iscdi=true |