Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluatio...
Gespeichert in:
Veröffentlicht in: | Academic radiology 2023-02, Vol.30 (2), p.196-214 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 2 |
container_start_page | 196 |
container_title | Academic radiology |
container_volume | 30 |
creator | Huang, Erich P. Pennello, Gene deSouza, Nandita M. Wang, Xiaofeng Buckler, Andrew J. Kinahan, Paul E. Barnhart, Huiman X. Delfino, Jana G. Hall, Timothy J. Raunig, David L. Guimaraes, Alexander R. Obuchowski, Nancy A. |
description | Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis. |
doi_str_mv | 10.1016/j.acra.2022.09.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633222005098</els_id><sourcerecordid>2728144438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-96fb612e6f2c113f00d8cc4893abacff258e94d006be6fd748c61826ea1b7c8e3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEoqXwAhyQjxyaYDtZx0Go0qrlT6VWlKpwtWadyXaWJN7azko8EO-Jw5YKLpxsf_7NN6P5suyl4IXgQr3ZFGA9FJJLWfCm4EI_yg6FrnVe8Uo9Tndeq1yVpTzInoWw4VwslC6fZgelknXZNOow-3k59ZG24GHA6MmyLxOMkSJE2iE7H2BN45rRyK4pfGdXHluykdz4ll2jdcOAYwvzO7DOeXYGEdjS3k0UaFaP2Q3a25Es9OwKfUIGGC2yZQgYQiqOxwzGll26Fnt2hjvs3XaWf6vfoKe9-_PsSQd9wBf351H29cP7m9NP-cXnj-eny4vcVnUd80Z1KyUkqk5aIcqO81ZbW-mmhBXYrpMLjU3Vcq5WiWnrSlsltFQIYlVbjeVRdrL33U6rAVubJvHQm62nAfwP44DMvz8j3Zq125lGy4WqZDJ4fW_g3d2EIZqBgsW-hxHdFIyspRZVVZU6oXKPWu9C8Ng9tBHczPmajZnzNXO-hjcm5ZuKXv094EPJn0AT8G4PYFrTjtCbYAnTzlvyaKNpHf3P_xejU7yJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728144438</pqid></control><display><type>article</type><title>Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Huang, Erich P. ; Pennello, Gene ; deSouza, Nandita M. ; Wang, Xiaofeng ; Buckler, Andrew J. ; Kinahan, Paul E. ; Barnhart, Huiman X. ; Delfino, Jana G. ; Hall, Timothy J. ; Raunig, David L. ; Guimaraes, Alexander R. ; Obuchowski, Nancy A.</creator><creatorcontrib>Huang, Erich P. ; Pennello, Gene ; deSouza, Nandita M. ; Wang, Xiaofeng ; Buckler, Andrew J. ; Kinahan, Paul E. ; Barnhart, Huiman X. ; Delfino, Jana G. ; Hall, Timothy J. ; Raunig, David L. ; Guimaraes, Alexander R. ; Obuchowski, Nancy A.</creatorcontrib><description>Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2022.09.018</identifier><identifier>PMID: 36273996</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomarkers ; Computer Simulation ; Diagnostic Imaging - methods ; Humans ; model development ; model validation ; quantitative imaging ; technical performance</subject><ispartof>Academic radiology, 2023-02, Vol.30 (2), p.196-214</ispartof><rights>2022</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-96fb612e6f2c113f00d8cc4893abacff258e94d006be6fd748c61826ea1b7c8e3</citedby><cites>FETCH-LOGICAL-c477t-96fb612e6f2c113f00d8cc4893abacff258e94d006be6fd748c61826ea1b7c8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633222005098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36273996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Erich P.</creatorcontrib><creatorcontrib>Pennello, Gene</creatorcontrib><creatorcontrib>deSouza, Nandita M.</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Buckler, Andrew J.</creatorcontrib><creatorcontrib>Kinahan, Paul E.</creatorcontrib><creatorcontrib>Barnhart, Huiman X.</creatorcontrib><creatorcontrib>Delfino, Jana G.</creatorcontrib><creatorcontrib>Hall, Timothy J.</creatorcontrib><creatorcontrib>Raunig, David L.</creatorcontrib><creatorcontrib>Guimaraes, Alexander R.</creatorcontrib><creatorcontrib>Obuchowski, Nancy A.</creatorcontrib><title>Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis.</description><subject>Biomarkers</subject><subject>Computer Simulation</subject><subject>Diagnostic Imaging - methods</subject><subject>Humans</subject><subject>model development</subject><subject>model validation</subject><subject>quantitative imaging</subject><subject>technical performance</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxiMEoqXwAhyQjxyaYDtZx0Go0qrlT6VWlKpwtWadyXaWJN7azko8EO-Jw5YKLpxsf_7NN6P5suyl4IXgQr3ZFGA9FJJLWfCm4EI_yg6FrnVe8Uo9Tndeq1yVpTzInoWw4VwslC6fZgelknXZNOow-3k59ZG24GHA6MmyLxOMkSJE2iE7H2BN45rRyK4pfGdXHluykdz4ll2jdcOAYwvzO7DOeXYGEdjS3k0UaFaP2Q3a25Es9OwKfUIGGC2yZQgYQiqOxwzGll26Fnt2hjvs3XaWf6vfoKe9-_PsSQd9wBf351H29cP7m9NP-cXnj-eny4vcVnUd80Z1KyUkqk5aIcqO81ZbW-mmhBXYrpMLjU3Vcq5WiWnrSlsltFQIYlVbjeVRdrL33U6rAVubJvHQm62nAfwP44DMvz8j3Zq125lGy4WqZDJ4fW_g3d2EIZqBgsW-hxHdFIyspRZVVZU6oXKPWu9C8Ng9tBHczPmajZnzNXO-hjcm5ZuKXv094EPJn0AT8G4PYFrTjtCbYAnTzlvyaKNpHf3P_xejU7yJ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Huang, Erich P.</creator><creator>Pennello, Gene</creator><creator>deSouza, Nandita M.</creator><creator>Wang, Xiaofeng</creator><creator>Buckler, Andrew J.</creator><creator>Kinahan, Paul E.</creator><creator>Barnhart, Huiman X.</creator><creator>Delfino, Jana G.</creator><creator>Hall, Timothy J.</creator><creator>Raunig, David L.</creator><creator>Guimaraes, Alexander R.</creator><creator>Obuchowski, Nancy A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230201</creationdate><title>Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation</title><author>Huang, Erich P. ; Pennello, Gene ; deSouza, Nandita M. ; Wang, Xiaofeng ; Buckler, Andrew J. ; Kinahan, Paul E. ; Barnhart, Huiman X. ; Delfino, Jana G. ; Hall, Timothy J. ; Raunig, David L. ; Guimaraes, Alexander R. ; Obuchowski, Nancy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-96fb612e6f2c113f00d8cc4893abacff258e94d006be6fd748c61826ea1b7c8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Computer Simulation</topic><topic>Diagnostic Imaging - methods</topic><topic>Humans</topic><topic>model development</topic><topic>model validation</topic><topic>quantitative imaging</topic><topic>technical performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Erich P.</creatorcontrib><creatorcontrib>Pennello, Gene</creatorcontrib><creatorcontrib>deSouza, Nandita M.</creatorcontrib><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Buckler, Andrew J.</creatorcontrib><creatorcontrib>Kinahan, Paul E.</creatorcontrib><creatorcontrib>Barnhart, Huiman X.</creatorcontrib><creatorcontrib>Delfino, Jana G.</creatorcontrib><creatorcontrib>Hall, Timothy J.</creatorcontrib><creatorcontrib>Raunig, David L.</creatorcontrib><creatorcontrib>Guimaraes, Alexander R.</creatorcontrib><creatorcontrib>Obuchowski, Nancy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Erich P.</au><au>Pennello, Gene</au><au>deSouza, Nandita M.</au><au>Wang, Xiaofeng</au><au>Buckler, Andrew J.</au><au>Kinahan, Paul E.</au><au>Barnhart, Huiman X.</au><au>Delfino, Jana G.</au><au>Hall, Timothy J.</au><au>Raunig, David L.</au><au>Guimaraes, Alexander R.</au><au>Obuchowski, Nancy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>196</spage><epage>214</epage><pages>196-214</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Combinations of multiple quantitative imaging biomarkers (QIBs) are often able to predict the likelihood of an event of interest such as death or disease recurrence more effectively than single imaging measurements can alone. The development of such multiparametric quantitative imaging and evaluation of its fitness of use differs from the analogous processes for individual QIBs in several key aspects. A computational procedure to combine the QIB values into a model output must be specified. The output must also be reproducible and be shown to have reasonably strong ability to predict the risk of an event of interest. Attention must be paid to statistical issues not often encountered in the single QIB scenario, including overfitting and bias in the estimates of model performance. This is the fourth in a five-part series on statistical methodology for assessing the technical performance of multiparametric quantitative imaging. Considerations for data acquisition are discussed and recommendations from the literature on methodology to construct and evaluate QIB-based models for risk prediction are summarized. The findings in the literature upon which these recommendations are based are demonstrated through simulation studies. The concepts in this manuscript are applied to a real-life example involving prediction of major adverse cardiac events using automated plaque analysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36273996</pmid><doi>10.1016/j.acra.2022.09.018</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-6332 |
ispartof | Academic radiology, 2023-02, Vol.30 (2), p.196-214 |
issn | 1076-6332 1878-4046 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825642 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biomarkers Computer Simulation Diagnostic Imaging - methods Humans model development model validation quantitative imaging technical performance |
title | Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20Quantitative%20Imaging%20in%20Risk%20Prediction:%20Recommendations%20for%20Data%20Acquisition,%20Technical%20Performance%20Assessment,%20and%20Model%20Development%20and%20Validation&rft.jtitle=Academic%20radiology&rft.au=Huang,%20Erich%20P.&rft.date=2023-02-01&rft.volume=30&rft.issue=2&rft.spage=196&rft.epage=214&rft.pages=196-214&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2022.09.018&rft_dat=%3Cproquest_pubme%3E2728144438%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728144438&rft_id=info:pmid/36273996&rft_els_id=S1076633222005098&rfr_iscdi=true |