Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics
The casing leakage phenomenon seriously affects the safety and economic problems of oil and gas production and transportation. In this paper, the numerical simulation study of the casing's micro-leakage flow field and acoustic field is carried out by taking the oil and gas well casing as the re...
Gespeichert in:
Veröffentlicht in: | Materials 2022-12, Vol.16 (1), p.386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 386 |
container_title | Materials |
container_volume | 16 |
creator | Li, Jingcui Wan, Jifang Liu, Hangming Yi, Xianzhong He, Yuxian Chen, Kang Zhao, Xinbo |
description | The casing leakage phenomenon seriously affects the safety and economic problems of oil and gas production and transportation. In this paper, the numerical simulation study of the casing's micro-leakage flow field and acoustic field is carried out by taking the oil and gas well casing as the research object. The CFD numerical model of the casing micro-leakage is established, and the influence of the size of the leakage hole, the shape of the leakage hole, and the pressure difference between the inside and outside the casing on the microleakage flow field is analyzed. An acoustic-vibroacoustic coupling calculation model based on Fluent and LMS Virtual LAB is established, and the sound pressure value and distribution at different frequencies are calculated. The results show that the flow rate of the leakage hole increases with the pressure difference between the inside and the outside leakage hole and the area of the leakage hole. Moreover, the flow rate of the circular leakage hole is higher for the same leakage hole area. The simulation model based on the equivalent sound source can be used to calculate and analyze the sound field in the tubing. By sound field computation based on the near-field equivalent sound source, when the frequency is 32,000 Hz, the amplitude of sound pressure is maximum. In addition, the sound pressure is greatly reduced once the sound wave passes through the tubing pipeline. Lastly, the sound pressure is higher at the position facing the leakage hole in the tubing, making detecting the leakage sound field signal easier. The results can provide a reference for further research on oil casing microleakage detection technology. |
doi_str_mv | 10.3390/ma16010386 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9822324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742563</galeid><sourcerecordid>A745742563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-b24940e4def56ca0cb58dea1647f536413df6f0d56469c48ffe612f108c394e23</originalsourceid><addsrcrecordid>eNpdkV1vVCEQhonR2Kb2xh9gSLwxJlv5OpzDjclm01WTqhfVa2Rh2FI5UOGcmv33UnetVbhgMvPMCy-D0HNKzjhX5M1oqCSU8EE-QsdUKbmgSojHD-IjdFrrNWmLczow9RQdcSmp6Jk4Rt8-zSOUYE3El9Psdjh7vDI1pC3-GGzJEcx3swW8jvknXgeIDl9CqmEKt2HaYZMcXto81ynYQ3l1ZYqxUxO9S9Zn6Ik3scLp4TxBX9fnX1bvFxef331YLS8WVohuWmyYUIKAcOA7aQ2xm25w0LyJ3ndcCsqdl564TgqprBi8B0mZp2SwXAlg_AS93evezJsRnIU0FRP1TQmjKTudTdD_VlK40tt8q9XAGGeiCbw6CJT8Y4Y66TFUCzGaBM2gZr2kaiC87xr68j_0Os8lNXu_KaoIFaRRZ3tqayLokHxu99q2HYzB5gQ-tPyyF10vWCd5a3i9b2j_XmsBf_96SvTdsPXfYTf4xUO_9-if0fJfhQqkew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761190140</pqid></control><display><type>article</type><title>Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Jingcui ; Wan, Jifang ; Liu, Hangming ; Yi, Xianzhong ; He, Yuxian ; Chen, Kang ; Zhao, Xinbo</creator><creatorcontrib>Li, Jingcui ; Wan, Jifang ; Liu, Hangming ; Yi, Xianzhong ; He, Yuxian ; Chen, Kang ; Zhao, Xinbo</creatorcontrib><description>The casing leakage phenomenon seriously affects the safety and economic problems of oil and gas production and transportation. In this paper, the numerical simulation study of the casing's micro-leakage flow field and acoustic field is carried out by taking the oil and gas well casing as the research object. The CFD numerical model of the casing micro-leakage is established, and the influence of the size of the leakage hole, the shape of the leakage hole, and the pressure difference between the inside and outside the casing on the microleakage flow field is analyzed. An acoustic-vibroacoustic coupling calculation model based on Fluent and LMS Virtual LAB is established, and the sound pressure value and distribution at different frequencies are calculated. The results show that the flow rate of the leakage hole increases with the pressure difference between the inside and the outside leakage hole and the area of the leakage hole. Moreover, the flow rate of the circular leakage hole is higher for the same leakage hole area. The simulation model based on the equivalent sound source can be used to calculate and analyze the sound field in the tubing. By sound field computation based on the near-field equivalent sound source, when the frequency is 32,000 Hz, the amplitude of sound pressure is maximum. In addition, the sound pressure is greatly reduced once the sound wave passes through the tubing pipeline. Lastly, the sound pressure is higher at the position facing the leakage hole in the tubing, making detecting the leakage sound field signal easier. The results can provide a reference for further research on oil casing microleakage detection technology.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16010386</identifier><identifier>PMID: 36614724</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acoustics ; Analysis ; Equivalence ; Flow velocity ; Gas flow ; Gas wells ; Influence ; Leakage ; Natural gas ; Numerical analysis ; Numerical models ; Pipes ; Pore size ; Simulation ; Simulation methods ; Simulation models ; Sound fields ; Sound pressure ; Sound sources ; Sound waves ; Virtual environments</subject><ispartof>Materials, 2022-12, Vol.16 (1), p.386</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-b24940e4def56ca0cb58dea1647f536413df6f0d56469c48ffe612f108c394e23</citedby><cites>FETCH-LOGICAL-c445t-b24940e4def56ca0cb58dea1647f536413df6f0d56469c48ffe612f108c394e23</cites><orcidid>0000-0002-5222-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822324/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822324/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36614724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jingcui</creatorcontrib><creatorcontrib>Wan, Jifang</creatorcontrib><creatorcontrib>Liu, Hangming</creatorcontrib><creatorcontrib>Yi, Xianzhong</creatorcontrib><creatorcontrib>He, Yuxian</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><creatorcontrib>Zhao, Xinbo</creatorcontrib><title>Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The casing leakage phenomenon seriously affects the safety and economic problems of oil and gas production and transportation. In this paper, the numerical simulation study of the casing's micro-leakage flow field and acoustic field is carried out by taking the oil and gas well casing as the research object. The CFD numerical model of the casing micro-leakage is established, and the influence of the size of the leakage hole, the shape of the leakage hole, and the pressure difference between the inside and outside the casing on the microleakage flow field is analyzed. An acoustic-vibroacoustic coupling calculation model based on Fluent and LMS Virtual LAB is established, and the sound pressure value and distribution at different frequencies are calculated. The results show that the flow rate of the leakage hole increases with the pressure difference between the inside and the outside leakage hole and the area of the leakage hole. Moreover, the flow rate of the circular leakage hole is higher for the same leakage hole area. The simulation model based on the equivalent sound source can be used to calculate and analyze the sound field in the tubing. By sound field computation based on the near-field equivalent sound source, when the frequency is 32,000 Hz, the amplitude of sound pressure is maximum. In addition, the sound pressure is greatly reduced once the sound wave passes through the tubing pipeline. Lastly, the sound pressure is higher at the position facing the leakage hole in the tubing, making detecting the leakage sound field signal easier. The results can provide a reference for further research on oil casing microleakage detection technology.</description><subject>Acoustics</subject><subject>Analysis</subject><subject>Equivalence</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Gas wells</subject><subject>Influence</subject><subject>Leakage</subject><subject>Natural gas</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Pipes</subject><subject>Pore size</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Simulation models</subject><subject>Sound fields</subject><subject>Sound pressure</subject><subject>Sound sources</subject><subject>Sound waves</subject><subject>Virtual environments</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1vVCEQhonR2Kb2xh9gSLwxJlv5OpzDjclm01WTqhfVa2Rh2FI5UOGcmv33UnetVbhgMvPMCy-D0HNKzjhX5M1oqCSU8EE-QsdUKbmgSojHD-IjdFrrNWmLczow9RQdcSmp6Jk4Rt8-zSOUYE3El9Psdjh7vDI1pC3-GGzJEcx3swW8jvknXgeIDl9CqmEKt2HaYZMcXto81ynYQ3l1ZYqxUxO9S9Zn6Ik3scLp4TxBX9fnX1bvFxef331YLS8WVohuWmyYUIKAcOA7aQ2xm25w0LyJ3ndcCsqdl564TgqprBi8B0mZp2SwXAlg_AS93evezJsRnIU0FRP1TQmjKTudTdD_VlK40tt8q9XAGGeiCbw6CJT8Y4Y66TFUCzGaBM2gZr2kaiC87xr68j_0Os8lNXu_KaoIFaRRZ3tqayLokHxu99q2HYzB5gQ-tPyyF10vWCd5a3i9b2j_XmsBf_96SvTdsPXfYTf4xUO_9-if0fJfhQqkew</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Li, Jingcui</creator><creator>Wan, Jifang</creator><creator>Liu, Hangming</creator><creator>Yi, Xianzhong</creator><creator>He, Yuxian</creator><creator>Chen, Kang</creator><creator>Zhao, Xinbo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5222-508X</orcidid></search><sort><creationdate>20221231</creationdate><title>Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics</title><author>Li, Jingcui ; Wan, Jifang ; Liu, Hangming ; Yi, Xianzhong ; He, Yuxian ; Chen, Kang ; Zhao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-b24940e4def56ca0cb58dea1647f536413df6f0d56469c48ffe612f108c394e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Analysis</topic><topic>Equivalence</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Gas wells</topic><topic>Influence</topic><topic>Leakage</topic><topic>Natural gas</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Pipes</topic><topic>Pore size</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Simulation models</topic><topic>Sound fields</topic><topic>Sound pressure</topic><topic>Sound sources</topic><topic>Sound waves</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jingcui</creatorcontrib><creatorcontrib>Wan, Jifang</creatorcontrib><creatorcontrib>Liu, Hangming</creatorcontrib><creatorcontrib>Yi, Xianzhong</creatorcontrib><creatorcontrib>He, Yuxian</creatorcontrib><creatorcontrib>Chen, Kang</creatorcontrib><creatorcontrib>Zhao, Xinbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jingcui</au><au>Wan, Jifang</au><au>Liu, Hangming</au><au>Yi, Xianzhong</au><au>He, Yuxian</au><au>Chen, Kang</au><au>Zhao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-31</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>386</spage><pages>386-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The casing leakage phenomenon seriously affects the safety and economic problems of oil and gas production and transportation. In this paper, the numerical simulation study of the casing's micro-leakage flow field and acoustic field is carried out by taking the oil and gas well casing as the research object. The CFD numerical model of the casing micro-leakage is established, and the influence of the size of the leakage hole, the shape of the leakage hole, and the pressure difference between the inside and outside the casing on the microleakage flow field is analyzed. An acoustic-vibroacoustic coupling calculation model based on Fluent and LMS Virtual LAB is established, and the sound pressure value and distribution at different frequencies are calculated. The results show that the flow rate of the leakage hole increases with the pressure difference between the inside and the outside leakage hole and the area of the leakage hole. Moreover, the flow rate of the circular leakage hole is higher for the same leakage hole area. The simulation model based on the equivalent sound source can be used to calculate and analyze the sound field in the tubing. By sound field computation based on the near-field equivalent sound source, when the frequency is 32,000 Hz, the amplitude of sound pressure is maximum. In addition, the sound pressure is greatly reduced once the sound wave passes through the tubing pipeline. Lastly, the sound pressure is higher at the position facing the leakage hole in the tubing, making detecting the leakage sound field signal easier. The results can provide a reference for further research on oil casing microleakage detection technology.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36614724</pmid><doi>10.3390/ma16010386</doi><orcidid>https://orcid.org/0000-0002-5222-508X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-12, Vol.16 (1), p.386 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9822324 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acoustics Analysis Equivalence Flow velocity Gas flow Gas wells Influence Leakage Natural gas Numerical analysis Numerical models Pipes Pore size Simulation Simulation methods Simulation models Sound fields Sound pressure Sound sources Sound waves Virtual environments |
title | Numerical Study of Casing Microleakage Flow Field Sensitivity and Acoustic Field Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20of%20Casing%20Microleakage%20Flow%20Field%20Sensitivity%20and%20Acoustic%20Field%20Characteristics&rft.jtitle=Materials&rft.au=Li,%20Jingcui&rft.date=2022-12-31&rft.volume=16&rft.issue=1&rft.spage=386&rft.pages=386-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16010386&rft_dat=%3Cgale_pubme%3EA745742563%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761190140&rft_id=info:pmid/36614724&rft_galeid=A745742563&rfr_iscdi=true |