Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts

Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-12, Vol.16 (1), p.100
Hauptverfasser: Mouralova, Katerina, Bednar, Josef, Benes, Libor, Prokes, Tomas, Zahradnicek, Radim, Fries, Jiri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 100
container_title Materials
container_volume 16
creator Mouralova, Katerina
Bednar, Josef
Benes, Libor
Prokes, Tomas
Zahradnicek, Radim
Fries, Jiri
description Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys are commonly used as electrodes for their high thermal conductivity. The subject of this study was creating mathematical models for the machining optimization of Ampcoloy 35 with different thicknesses (ranging from 5 to 160 mm with a step of 5 mm) using WEDM to improve the surface properties of the mold parts. The Box-Behnken type experiment was used with a total of 448 samples produced. The following machining parameters were altered over the course of the experiment: the pulse on and off time, discharge current, and material thickness. The cutting speed was measured, and the topography of the machined surfaces in the center and at the margins of the samples was analyzed. The morphology and subsurface layer were also studied. What makes this study unique is the large number of the tested thicknesses, ranging from 5 to 160 mm with a step of 5 mm. The contribution of this study to the automotive industry and plastic injection mold production is, therefore, significant. The regression models for the cutting speed and surface topography allow for efficient defect-free machining of Ampcoloy 35 of 5-160 mm thicknesses, both on the surface and in the subsurface layer.
doi_str_mv 10.3390/ma16010100
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742217</galeid><sourcerecordid>A745742217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9cd51d1cf9af70197d53fdea210e05568bfa5aa80b8479a72e503fc50ff917c93</originalsourceid><addsrcrecordid>eNpdkt9qFDEUxgdRbKm98QEk4I0IW_NnMpncCEtbtdChBVu8DNnMyW7qTDImmUr7Gn1hU7fWas5FQvL7vpMPTlW9JviAMYk_jJo0mJTCz6pdImWzILKunz8571T7KV3hshgjLZUvqx3WNKSumdit7jqdNzDq7IweUBd6GBKyIaJOm43zzq_R2ZTd6G4LEjwKFi3HyYQh3CDG0U-XN-jIWQsRfEYXG2e-e0gJErpM9-Jvx0cdygGdjFMM14BKM_R1jlYbQOcxTBCzK3Cx7cLQo3Mdc3pVvbB6SLD_sO9Vl5-OLw6_LE7PPp8cLk8Xpq55XkjTc9ITY6W2AhMpes5sD5oSDJjzpl1ZzbVu8aqthdSCAsfMGo6tlUQYyfaqj1vfaV6N0JuSIOpBTdGNOt6ooJ3698W7jVqHayVbShrSFoN3DwYx_JghZTW6ZGAYtIcwJ0VFQ2RLKGsK-vY_9CrM0Zd4vykiaUNpoQ621FoPoJy3ofQ1pXoYnQkerCv3S1FzUVNKRBG83wpMDClFsI-_J1jdz4f6Ox8FfvM07yP6ZxrYLxYzttE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761192622</pqid></control><display><type>article</type><title>Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mouralova, Katerina ; Bednar, Josef ; Benes, Libor ; Prokes, Tomas ; Zahradnicek, Radim ; Fries, Jiri</creator><creatorcontrib>Mouralova, Katerina ; Bednar, Josef ; Benes, Libor ; Prokes, Tomas ; Zahradnicek, Radim ; Fries, Jiri</creatorcontrib><description>Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys are commonly used as electrodes for their high thermal conductivity. The subject of this study was creating mathematical models for the machining optimization of Ampcoloy 35 with different thicknesses (ranging from 5 to 160 mm with a step of 5 mm) using WEDM to improve the surface properties of the mold parts. The Box-Behnken type experiment was used with a total of 448 samples produced. The following machining parameters were altered over the course of the experiment: the pulse on and off time, discharge current, and material thickness. The cutting speed was measured, and the topography of the machined surfaces in the center and at the margins of the samples was analyzed. The morphology and subsurface layer were also studied. What makes this study unique is the large number of the tested thicknesses, ranging from 5 to 160 mm with a step of 5 mm. The contribution of this study to the automotive industry and plastic injection mold production is, therefore, significant. The regression models for the cutting speed and surface topography allow for efficient defect-free machining of Ampcoloy 35 of 5-160 mm thicknesses, both on the surface and in the subsurface layer.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16010100</identifier><identifier>PMID: 36614437</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Analysis ; Automobile industry ; Copper alloys ; Copper base alloys ; Cutting parameters ; Cutting speed ; Electric discharge machining ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Experiments ; Heat conductivity ; Influence ; Injection molding ; Machine tools ; Machining ; Mathematical models ; Molds ; Optimization ; Optimization techniques ; Process parameters ; Regression models ; Surface properties ; Taguchi methods ; Technology application ; Thermal conductivity ; Thickness ; Topography ; Transportation equipment industry ; Variance analysis</subject><ispartof>Materials, 2022-12, Vol.16 (1), p.100</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9cd51d1cf9af70197d53fdea210e05568bfa5aa80b8479a72e503fc50ff917c93</citedby><cites>FETCH-LOGICAL-c445t-9cd51d1cf9af70197d53fdea210e05568bfa5aa80b8479a72e503fc50ff917c93</cites><orcidid>0000-0002-6025-2520 ; 0000-0001-9776-6878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36614437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouralova, Katerina</creatorcontrib><creatorcontrib>Bednar, Josef</creatorcontrib><creatorcontrib>Benes, Libor</creatorcontrib><creatorcontrib>Prokes, Tomas</creatorcontrib><creatorcontrib>Zahradnicek, Radim</creatorcontrib><creatorcontrib>Fries, Jiri</creatorcontrib><title>Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys are commonly used as electrodes for their high thermal conductivity. The subject of this study was creating mathematical models for the machining optimization of Ampcoloy 35 with different thicknesses (ranging from 5 to 160 mm with a step of 5 mm) using WEDM to improve the surface properties of the mold parts. The Box-Behnken type experiment was used with a total of 448 samples produced. The following machining parameters were altered over the course of the experiment: the pulse on and off time, discharge current, and material thickness. The cutting speed was measured, and the topography of the machined surfaces in the center and at the margins of the samples was analyzed. The morphology and subsurface layer were also studied. What makes this study unique is the large number of the tested thicknesses, ranging from 5 to 160 mm with a step of 5 mm. The contribution of this study to the automotive industry and plastic injection mold production is, therefore, significant. The regression models for the cutting speed and surface topography allow for efficient defect-free machining of Ampcoloy 35 of 5-160 mm thicknesses, both on the surface and in the subsurface layer.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Automobile industry</subject><subject>Copper alloys</subject><subject>Copper base alloys</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Electric discharge machining</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Experiments</subject><subject>Heat conductivity</subject><subject>Influence</subject><subject>Injection molding</subject><subject>Machine tools</subject><subject>Machining</subject><subject>Mathematical models</subject><subject>Molds</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Process parameters</subject><subject>Regression models</subject><subject>Surface properties</subject><subject>Taguchi methods</subject><subject>Technology application</subject><subject>Thermal conductivity</subject><subject>Thickness</subject><subject>Topography</subject><subject>Transportation equipment industry</subject><subject>Variance analysis</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkt9qFDEUxgdRbKm98QEk4I0IW_NnMpncCEtbtdChBVu8DNnMyW7qTDImmUr7Gn1hU7fWas5FQvL7vpMPTlW9JviAMYk_jJo0mJTCz6pdImWzILKunz8571T7KV3hshgjLZUvqx3WNKSumdit7jqdNzDq7IweUBd6GBKyIaJOm43zzq_R2ZTd6G4LEjwKFi3HyYQh3CDG0U-XN-jIWQsRfEYXG2e-e0gJErpM9-Jvx0cdygGdjFMM14BKM_R1jlYbQOcxTBCzK3Cx7cLQo3Mdc3pVvbB6SLD_sO9Vl5-OLw6_LE7PPp8cLk8Xpq55XkjTc9ITY6W2AhMpes5sD5oSDJjzpl1ZzbVu8aqthdSCAsfMGo6tlUQYyfaqj1vfaV6N0JuSIOpBTdGNOt6ooJ3698W7jVqHayVbShrSFoN3DwYx_JghZTW6ZGAYtIcwJ0VFQ2RLKGsK-vY_9CrM0Zd4vykiaUNpoQ621FoPoJy3ofQ1pXoYnQkerCv3S1FzUVNKRBG83wpMDClFsI-_J1jdz4f6Ox8FfvM07yP6ZxrYLxYzttE</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Mouralova, Katerina</creator><creator>Bednar, Josef</creator><creator>Benes, Libor</creator><creator>Prokes, Tomas</creator><creator>Zahradnicek, Radim</creator><creator>Fries, Jiri</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6025-2520</orcidid><orcidid>https://orcid.org/0000-0001-9776-6878</orcidid></search><sort><creationdate>20221222</creationdate><title>Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts</title><author>Mouralova, Katerina ; Bednar, Josef ; Benes, Libor ; Prokes, Tomas ; Zahradnicek, Radim ; Fries, Jiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9cd51d1cf9af70197d53fdea210e05568bfa5aa80b8479a72e503fc50ff917c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Automobile industry</topic><topic>Copper alloys</topic><topic>Copper base alloys</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Electric discharge machining</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Experiments</topic><topic>Heat conductivity</topic><topic>Influence</topic><topic>Injection molding</topic><topic>Machine tools</topic><topic>Machining</topic><topic>Mathematical models</topic><topic>Molds</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Process parameters</topic><topic>Regression models</topic><topic>Surface properties</topic><topic>Taguchi methods</topic><topic>Technology application</topic><topic>Thermal conductivity</topic><topic>Thickness</topic><topic>Topography</topic><topic>Transportation equipment industry</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouralova, Katerina</creatorcontrib><creatorcontrib>Bednar, Josef</creatorcontrib><creatorcontrib>Benes, Libor</creatorcontrib><creatorcontrib>Prokes, Tomas</creatorcontrib><creatorcontrib>Zahradnicek, Radim</creatorcontrib><creatorcontrib>Fries, Jiri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouralova, Katerina</au><au>Bednar, Josef</au><au>Benes, Libor</au><au>Prokes, Tomas</au><au>Zahradnicek, Radim</au><au>Fries, Jiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-22</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>100</spage><pages>100-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Wire electrical discharge machining (WEDM) is an unconventional machining technology that can be used to machine materials with minimum electrical conductivity. The technology is often employed in the automotive industry, as it makes it possible to produce mold parts of complex shapes. Copper alloys are commonly used as electrodes for their high thermal conductivity. The subject of this study was creating mathematical models for the machining optimization of Ampcoloy 35 with different thicknesses (ranging from 5 to 160 mm with a step of 5 mm) using WEDM to improve the surface properties of the mold parts. The Box-Behnken type experiment was used with a total of 448 samples produced. The following machining parameters were altered over the course of the experiment: the pulse on and off time, discharge current, and material thickness. The cutting speed was measured, and the topography of the machined surfaces in the center and at the margins of the samples was analyzed. The morphology and subsurface layer were also studied. What makes this study unique is the large number of the tested thicknesses, ranging from 5 to 160 mm with a step of 5 mm. The contribution of this study to the automotive industry and plastic injection mold production is, therefore, significant. The regression models for the cutting speed and surface topography allow for efficient defect-free machining of Ampcoloy 35 of 5-160 mm thicknesses, both on the surface and in the subsurface layer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36614437</pmid><doi>10.3390/ma16010100</doi><orcidid>https://orcid.org/0000-0002-6025-2520</orcidid><orcidid>https://orcid.org/0000-0001-9776-6878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-12, Vol.16 (1), p.100
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821618
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloys
Analysis
Automobile industry
Copper alloys
Copper base alloys
Cutting parameters
Cutting speed
Electric discharge machining
Electric properties
Electrical conductivity
Electrical resistivity
Experiments
Heat conductivity
Influence
Injection molding
Machine tools
Machining
Mathematical models
Molds
Optimization
Optimization techniques
Process parameters
Regression models
Surface properties
Taguchi methods
Technology application
Thermal conductivity
Thickness
Topography
Transportation equipment industry
Variance analysis
title Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Models%20for%20Machining%20Optimization%20of%20Ampcoloy%2035%20with%20Different%20Thicknesses%20Using%20WEDM%20to%20Improve%20the%20Surface%20Properties%20of%20Mold%20Parts&rft.jtitle=Materials&rft.au=Mouralova,%20Katerina&rft.date=2022-12-22&rft.volume=16&rft.issue=1&rft.spage=100&rft.pages=100-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16010100&rft_dat=%3Cgale_pubme%3EA745742217%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761192622&rft_id=info:pmid/36614437&rft_galeid=A745742217&rfr_iscdi=true