Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel

In this work, first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength, tou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-12, Vol.16 (1), p.152
Hauptverfasser: Fan, Xiuru, Mi, Zhishan, Yang, Li, Su, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 152
container_title Materials
container_volume 16
creator Fan, Xiuru
Mi, Zhishan
Yang, Li
Su, Hang
description In this work, first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength, toughness, and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere, hydrogen embrittlement (HE) of HSLA steel attracts attention. However, due to the small size of hydrogen atoms, the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level, DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore, the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.
doi_str_mv 10.3390/ma16010152
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742134</galeid><sourcerecordid>A745742134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-867e05ee6ac39aa4ef321f11c76306cbe339263e934c59253f8fc94366fdd3123</originalsourceid><addsrcrecordid>eNpdkk1vFCEYx4nR2Kb24gcwJF6MydZhYJjlYrLpi22ypoe2Z8IyDzM0DKzA1OzVTy7t1LUKB8if3_PwvCH0nlQnlIrqy6gIr0hFmvoVOiRC8AURjL1-cT9AxyndV2VRSpa1eIsOKOeEMUEO0a_VduusVtkGj4PBZxe3-MaOk5uVHHAeAF_5B0jZ9nvsctfF0IPH5-Mm2pwdjOAz_g56UN6mESvf4TNItp9x2w_4JkfwfR7wOvzEK-fCrkgA7h16Y5RLcPx8HqG7i_Pb08vF-vrb1elqvdCMNXmx5C1UDQBXmgqlGBhaE0OIbjmtuN5AKUfNKQjKdCPqhpql0YKVVE3XUVLTI_R19rudNiN0ugQclZPbaEcVdzIoK_998XaQfXiQYlmT2cGnZwcx_JhKQeRokwbnlIcwJVm3nIhWCFoV9ON_6H2Yoi_pPVFElF40hTqZqV45kNabUP7VZXcwWh08GFv0VcualpUQWDH4PBvoGFKKYPbRk0o-joP8Ow4F_vAy3z36p_n0Nwq3sA8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761190335</pqid></control><display><type>article</type><title>Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fan, Xiuru ; Mi, Zhishan ; Yang, Li ; Su, Hang</creator><creatorcontrib>Fan, Xiuru ; Mi, Zhishan ; Yang, Li ; Su, Hang</creatorcontrib><description>In this work, first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength, toughness, and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere, hydrogen embrittlement (HE) of HSLA steel attracts attention. However, due to the small size of hydrogen atoms, the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level, DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore, the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16010152</identifier><identifier>PMID: 36614491</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloying effects ; Alloying elements ; Alloys ; Alternative energy sources ; Boron steel ; Clean energy ; Crack propagation ; Design ; Experimental methods ; First principles ; Grain boundaries ; High strength low alloy steels ; Hydrogen ; Hydrogen atoms ; Hydrogen embrittlement ; Hydrogen storage ; Investigations ; Mechanical properties ; Metal fatigue ; Nitrogen ; Propagation ; Renewable resources ; Research methodology ; Simulation ; Specialty steels ; Stainless steel ; Steel alloys</subject><ispartof>Materials, 2022-12, Vol.16 (1), p.152</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-867e05ee6ac39aa4ef321f11c76306cbe339263e934c59253f8fc94366fdd3123</citedby><cites>FETCH-LOGICAL-c445t-867e05ee6ac39aa4ef321f11c76306cbe339263e934c59253f8fc94366fdd3123</cites><orcidid>0000-0001-7715-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821312/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821312/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36614491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Xiuru</creatorcontrib><creatorcontrib>Mi, Zhishan</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><title>Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this work, first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength, toughness, and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere, hydrogen embrittlement (HE) of HSLA steel attracts attention. However, due to the small size of hydrogen atoms, the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level, DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore, the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.</description><subject>Alloying effects</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Alternative energy sources</subject><subject>Boron steel</subject><subject>Clean energy</subject><subject>Crack propagation</subject><subject>Design</subject><subject>Experimental methods</subject><subject>First principles</subject><subject>Grain boundaries</subject><subject>High strength low alloy steels</subject><subject>Hydrogen</subject><subject>Hydrogen atoms</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen storage</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Nitrogen</subject><subject>Propagation</subject><subject>Renewable resources</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Specialty steels</subject><subject>Stainless steel</subject><subject>Steel alloys</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkk1vFCEYx4nR2Kb24gcwJF6MydZhYJjlYrLpi22ypoe2Z8IyDzM0DKzA1OzVTy7t1LUKB8if3_PwvCH0nlQnlIrqy6gIr0hFmvoVOiRC8AURjL1-cT9AxyndV2VRSpa1eIsOKOeEMUEO0a_VduusVtkGj4PBZxe3-MaOk5uVHHAeAF_5B0jZ9nvsctfF0IPH5-Mm2pwdjOAz_g56UN6mESvf4TNItp9x2w_4JkfwfR7wOvzEK-fCrkgA7h16Y5RLcPx8HqG7i_Pb08vF-vrb1elqvdCMNXmx5C1UDQBXmgqlGBhaE0OIbjmtuN5AKUfNKQjKdCPqhpql0YKVVE3XUVLTI_R19rudNiN0ugQclZPbaEcVdzIoK_998XaQfXiQYlmT2cGnZwcx_JhKQeRokwbnlIcwJVm3nIhWCFoV9ON_6H2Yoi_pPVFElF40hTqZqV45kNabUP7VZXcwWh08GFv0VcualpUQWDH4PBvoGFKKYPbRk0o-joP8Ow4F_vAy3z36p_n0Nwq3sA8</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Fan, Xiuru</creator><creator>Mi, Zhishan</creator><creator>Yang, Li</creator><creator>Su, Hang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7715-4241</orcidid></search><sort><creationdate>20221223</creationdate><title>Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel</title><author>Fan, Xiuru ; Mi, Zhishan ; Yang, Li ; Su, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-867e05ee6ac39aa4ef321f11c76306cbe339263e934c59253f8fc94366fdd3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying effects</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Alternative energy sources</topic><topic>Boron steel</topic><topic>Clean energy</topic><topic>Crack propagation</topic><topic>Design</topic><topic>Experimental methods</topic><topic>First principles</topic><topic>Grain boundaries</topic><topic>High strength low alloy steels</topic><topic>Hydrogen</topic><topic>Hydrogen atoms</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen storage</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Nitrogen</topic><topic>Propagation</topic><topic>Renewable resources</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Specialty steels</topic><topic>Stainless steel</topic><topic>Steel alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiuru</creatorcontrib><creatorcontrib>Mi, Zhishan</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Su, Hang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiuru</au><au>Mi, Zhishan</au><au>Yang, Li</au><au>Su, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-23</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>152</spage><pages>152-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this work, first-principles methods were performed to simulate interactions between hydrogen and common alloying elements of high strength low alloy (HSLA) steel. The world has been convinced that hydrogen could be one of the future clean energy sources. HSLA steel with a balance of strength, toughness, and hydrogen embrittlement susceptibility is expected for application in large-scale hydrogen storage and transportation. To evaluate the property deterioration under a hydrogen atmosphere, hydrogen embrittlement (HE) of HSLA steel attracts attention. However, due to the small size of hydrogen atoms, the mechanism of HE is challenging to observe directly by current experimental methods. To understand the HE mechanism at an atomic level, DFT methods were applied to simulate the effects of alloying elements doping in bcc-Fe bulk structure and grain boundary structure. Furthermore, the potential application of DFT to provide theoretical advice for HSLA steel design is discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36614491</pmid><doi>10.3390/ma16010152</doi><orcidid>https://orcid.org/0000-0001-7715-4241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-12, Vol.16 (1), p.152
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9821312
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloying effects
Alloying elements
Alloys
Alternative energy sources
Boron steel
Clean energy
Crack propagation
Design
Experimental methods
First principles
Grain boundaries
High strength low alloy steels
Hydrogen
Hydrogen atoms
Hydrogen embrittlement
Hydrogen storage
Investigations
Mechanical properties
Metal fatigue
Nitrogen
Propagation
Renewable resources
Research methodology
Simulation
Specialty steels
Stainless steel
Steel alloys
title Application of DFT Simulation to the Investigation of Hydrogen Embrittlement Mechanism and Design of High Strength Low Alloy Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20DFT%20Simulation%20to%20the%20Investigation%20of%20Hydrogen%20Embrittlement%20Mechanism%20and%20Design%20of%20High%20Strength%20Low%20Alloy%20Steel&rft.jtitle=Materials&rft.au=Fan,%20Xiuru&rft.date=2022-12-23&rft.volume=16&rft.issue=1&rft.spage=152&rft.pages=152-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16010152&rft_dat=%3Cgale_pubme%3EA745742134%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761190335&rft_id=info:pmid/36614491&rft_galeid=A745742134&rfr_iscdi=true