Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe

The chromosomal region 17q21.31 harbors a 900 kb inversion polymorphism named after the microtubule-associated protein tau (MAPT) gene. Since no recombination occurs, two haplotypes are recognized: a directly oriented variant (H1) and an inverted variant (H2). The H2 haplotype features a distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2023-01, Vol.298 (1), p.153-160
Hauptverfasser: Espinosa, Ibone, Alfonso-Sánchez, Miguel A., Gómez-Pérez, Luis, Peña, Jose A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 1
container_start_page 153
container_title Molecular genetics and genomics : MGG
container_volume 298
creator Espinosa, Ibone
Alfonso-Sánchez, Miguel A.
Gómez-Pérez, Luis
Peña, Jose A.
description The chromosomal region 17q21.31 harbors a 900 kb inversion polymorphism named after the microtubule-associated protein tau (MAPT) gene. Since no recombination occurs, two haplotypes are recognized: a directly oriented variant (H1) and an inverted variant (H2). The H2 haplotype features a distribution pattern with high frequencies in the Near East and Europe, medium levels in South Asia and North Africa, and low levels elsewhere. Studies of this genomic region are relevant owing to its likely association with numerous neurodegenerative diseases. However, the causes underlying the geographic distribution of the haplotype frequencies remain a bone of contention among researchers. With this work, we have intended to outline a plausible hypothesis on the origin of the high European H2 frequencies. To that end, we have analyzed an extensive population database (including three new Iberian populations) to explore potential clinal variations of H2 frequencies. We found a sigmoidal frequency cline with an upward trend from South Asia to Europe. The maximum value was detected in the Basques from Gipuzkoa province (0.494) with the curve’s inflection point in the Near East. From our results, we suggest that the most likely scenario for high H2 frequencies in Europe would be a founding event in the Near East during the late Paleolithic or early Neolithic. Subsequently, such H2 overrepresentation would have reached Europe with the arrival of the first Neolithic farmers. The current frequencies and geographic distribution of the 17q21.31 inversion suggest that the founding events mainly affected the H2D subhaplotype.
doi_str_mv 10.1007/s00438-022-01969-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9816301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735170362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-81ed4c1f2bac0f02e293871b96ddb51319203f7a7369f52ef5d370623c8aefce3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EomXhBTggS1y4pHjsJE44IFXVQitV5QJny3EmjausndrOij4DL413tyx_DpxseX7zfTP-CHkN7AwYk-8jY6VoCsZ5waCt24I9IadQgyzKmounxztUJ-RFjHeMgay5fE5ORC2qCtrqlPy4QT_ZNFpD8fusXbTeUe16mkakIO85nAmg1m0x7EvW0asOg9UfMkVx66cl5XcdHqie5-C1GWny9JLTUc-TTw8z0t7GFGy3B3cCO-kb1IGudUx7s_US_IwvybNBTxFfPZ4r8u3T-uvFZXH95fPVxfl1YUpZpqIB7EsDA--0YQPjyFvRSOjauu-7CgS0nIlBainqdqg4DlUvJMs_YhqNg0GxIh8PuvPSbbA36FLQk5qD3eQ9lNdW_V1xdlS3fqvaBmrBIAu8exQI_n7BmNTGRoPTpB36JSouRQWSiey5Im__Qe_8ElxeL1M1a5sSSpkpfqBM8DEGHI7DAFO7rNUha5WzVvusFctNb_5c49jyK9wMiAMQc8ndYvjt_R_Zn1tttcs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760984147</pqid></control><display><type>article</type><title>Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Espinosa, Ibone ; Alfonso-Sánchez, Miguel A. ; Gómez-Pérez, Luis ; Peña, Jose A.</creator><creatorcontrib>Espinosa, Ibone ; Alfonso-Sánchez, Miguel A. ; Gómez-Pérez, Luis ; Peña, Jose A.</creatorcontrib><description>The chromosomal region 17q21.31 harbors a 900 kb inversion polymorphism named after the microtubule-associated protein tau (MAPT) gene. Since no recombination occurs, two haplotypes are recognized: a directly oriented variant (H1) and an inverted variant (H2). The H2 haplotype features a distribution pattern with high frequencies in the Near East and Europe, medium levels in South Asia and North Africa, and low levels elsewhere. Studies of this genomic region are relevant owing to its likely association with numerous neurodegenerative diseases. However, the causes underlying the geographic distribution of the haplotype frequencies remain a bone of contention among researchers. With this work, we have intended to outline a plausible hypothesis on the origin of the high European H2 frequencies. To that end, we have analyzed an extensive population database (including three new Iberian populations) to explore potential clinal variations of H2 frequencies. We found a sigmoidal frequency cline with an upward trend from South Asia to Europe. The maximum value was detected in the Basques from Gipuzkoa province (0.494) with the curve’s inflection point in the Near East. From our results, we suggest that the most likely scenario for high H2 frequencies in Europe would be a founding event in the Near East during the late Paleolithic or early Neolithic. Subsequently, such H2 overrepresentation would have reached Europe with the arrival of the first Neolithic farmers. The current frequencies and geographic distribution of the 17q21.31 inversion suggest that the founding events mainly affected the H2D subhaplotype.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-022-01969-0</identifier><identifier>PMID: 36355195</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Biochemistry ; Biomedical and Life Sciences ; Europe ; Gene polymorphism ; Geographical distribution ; Haplotypes ; Haplotypes - genetics ; Human Genetics ; Inversion ; Life Sciences ; Microbial Genetics and Genomics ; Middle East ; Neolithic ; Neurodegenerative diseases ; Original ; Original Article ; Plant Genetics and Genomics ; Polymorphism, Genetic ; Recombination ; Tau protein ; tau Proteins - genetics</subject><ispartof>Molecular genetics and genomics : MGG, 2023-01, Vol.298 (1), p.153-160</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-81ed4c1f2bac0f02e293871b96ddb51319203f7a7369f52ef5d370623c8aefce3</citedby><cites>FETCH-LOGICAL-c474t-81ed4c1f2bac0f02e293871b96ddb51319203f7a7369f52ef5d370623c8aefce3</cites><orcidid>0000-0002-2952-8461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-022-01969-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-022-01969-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36355195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinosa, Ibone</creatorcontrib><creatorcontrib>Alfonso-Sánchez, Miguel A.</creatorcontrib><creatorcontrib>Gómez-Pérez, Luis</creatorcontrib><creatorcontrib>Peña, Jose A.</creatorcontrib><title>Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>The chromosomal region 17q21.31 harbors a 900 kb inversion polymorphism named after the microtubule-associated protein tau (MAPT) gene. Since no recombination occurs, two haplotypes are recognized: a directly oriented variant (H1) and an inverted variant (H2). The H2 haplotype features a distribution pattern with high frequencies in the Near East and Europe, medium levels in South Asia and North Africa, and low levels elsewhere. Studies of this genomic region are relevant owing to its likely association with numerous neurodegenerative diseases. However, the causes underlying the geographic distribution of the haplotype frequencies remain a bone of contention among researchers. With this work, we have intended to outline a plausible hypothesis on the origin of the high European H2 frequencies. To that end, we have analyzed an extensive population database (including three new Iberian populations) to explore potential clinal variations of H2 frequencies. We found a sigmoidal frequency cline with an upward trend from South Asia to Europe. The maximum value was detected in the Basques from Gipuzkoa province (0.494) with the curve’s inflection point in the Near East. From our results, we suggest that the most likely scenario for high H2 frequencies in Europe would be a founding event in the Near East during the late Paleolithic or early Neolithic. Subsequently, such H2 overrepresentation would have reached Europe with the arrival of the first Neolithic farmers. The current frequencies and geographic distribution of the 17q21.31 inversion suggest that the founding events mainly affected the H2D subhaplotype.</description><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Europe</subject><subject>Gene polymorphism</subject><subject>Geographical distribution</subject><subject>Haplotypes</subject><subject>Haplotypes - genetics</subject><subject>Human Genetics</subject><subject>Inversion</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Middle East</subject><subject>Neolithic</subject><subject>Neurodegenerative diseases</subject><subject>Original</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Genetic</subject><subject>Recombination</subject><subject>Tau protein</subject><subject>tau Proteins - genetics</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQxi0EomXhBTggS1y4pHjsJE44IFXVQitV5QJny3EmjausndrOij4DL413tyx_DpxseX7zfTP-CHkN7AwYk-8jY6VoCsZ5waCt24I9IadQgyzKmounxztUJ-RFjHeMgay5fE5ORC2qCtrqlPy4QT_ZNFpD8fusXbTeUe16mkakIO85nAmg1m0x7EvW0asOg9UfMkVx66cl5XcdHqie5-C1GWny9JLTUc-TTw8z0t7GFGy3B3cCO-kb1IGudUx7s_US_IwvybNBTxFfPZ4r8u3T-uvFZXH95fPVxfl1YUpZpqIB7EsDA--0YQPjyFvRSOjauu-7CgS0nIlBainqdqg4DlUvJMs_YhqNg0GxIh8PuvPSbbA36FLQk5qD3eQ9lNdW_V1xdlS3fqvaBmrBIAu8exQI_n7BmNTGRoPTpB36JSouRQWSiey5Im__Qe_8ElxeL1M1a5sSSpkpfqBM8DEGHI7DAFO7rNUha5WzVvusFctNb_5c49jyK9wMiAMQc8ndYvjt_R_Zn1tttcs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Espinosa, Ibone</creator><creator>Alfonso-Sánchez, Miguel A.</creator><creator>Gómez-Pérez, Luis</creator><creator>Peña, Jose A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2952-8461</orcidid></search><sort><creationdate>20230101</creationdate><title>Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe</title><author>Espinosa, Ibone ; Alfonso-Sánchez, Miguel A. ; Gómez-Pérez, Luis ; Peña, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-81ed4c1f2bac0f02e293871b96ddb51319203f7a7369f52ef5d370623c8aefce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Europe</topic><topic>Gene polymorphism</topic><topic>Geographical distribution</topic><topic>Haplotypes</topic><topic>Haplotypes - genetics</topic><topic>Human Genetics</topic><topic>Inversion</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Middle East</topic><topic>Neolithic</topic><topic>Neurodegenerative diseases</topic><topic>Original</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Genetic</topic><topic>Recombination</topic><topic>Tau protein</topic><topic>tau Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinosa, Ibone</creatorcontrib><creatorcontrib>Alfonso-Sánchez, Miguel A.</creatorcontrib><creatorcontrib>Gómez-Pérez, Luis</creatorcontrib><creatorcontrib>Peña, Jose A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinosa, Ibone</au><au>Alfonso-Sánchez, Miguel A.</au><au>Gómez-Pérez, Luis</au><au>Peña, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>298</volume><issue>1</issue><spage>153</spage><epage>160</epage><pages>153-160</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>The chromosomal region 17q21.31 harbors a 900 kb inversion polymorphism named after the microtubule-associated protein tau (MAPT) gene. Since no recombination occurs, two haplotypes are recognized: a directly oriented variant (H1) and an inverted variant (H2). The H2 haplotype features a distribution pattern with high frequencies in the Near East and Europe, medium levels in South Asia and North Africa, and low levels elsewhere. Studies of this genomic region are relevant owing to its likely association with numerous neurodegenerative diseases. However, the causes underlying the geographic distribution of the haplotype frequencies remain a bone of contention among researchers. With this work, we have intended to outline a plausible hypothesis on the origin of the high European H2 frequencies. To that end, we have analyzed an extensive population database (including three new Iberian populations) to explore potential clinal variations of H2 frequencies. We found a sigmoidal frequency cline with an upward trend from South Asia to Europe. The maximum value was detected in the Basques from Gipuzkoa province (0.494) with the curve’s inflection point in the Near East. From our results, we suggest that the most likely scenario for high H2 frequencies in Europe would be a founding event in the Near East during the late Paleolithic or early Neolithic. Subsequently, such H2 overrepresentation would have reached Europe with the arrival of the first Neolithic farmers. The current frequencies and geographic distribution of the 17q21.31 inversion suggest that the founding events mainly affected the H2D subhaplotype.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36355195</pmid><doi>10.1007/s00438-022-01969-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2952-8461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2023-01, Vol.298 (1), p.153-160
issn 1617-4615
1617-4623
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9816301
source MEDLINE; SpringerNature Journals
subjects Animal Genetics and Genomics
Biochemistry
Biomedical and Life Sciences
Europe
Gene polymorphism
Geographical distribution
Haplotypes
Haplotypes - genetics
Human Genetics
Inversion
Life Sciences
Microbial Genetics and Genomics
Middle East
Neolithic
Neurodegenerative diseases
Original
Original Article
Plant Genetics and Genomics
Polymorphism, Genetic
Recombination
Tau protein
tau Proteins - genetics
title Neolithic expansion and the 17q21.31 inversion in Iberia: an evolutionary approach to H2 haplotype distribution in the Near East and Europe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neolithic%20expansion%20and%20the%2017q21.31%20inversion%20in%20Iberia:%20an%20evolutionary%20approach%20to%20H2%20haplotype%20distribution%20in%20the%20Near%20East%20and%20Europe&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Espinosa,%20Ibone&rft.date=2023-01-01&rft.volume=298&rft.issue=1&rft.spage=153&rft.epage=160&rft.pages=153-160&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-022-01969-0&rft_dat=%3Cproquest_pubme%3E2735170362%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760984147&rft_id=info:pmid/36355195&rfr_iscdi=true