Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer

Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of cast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer research 2023-01, Vol.21 (1), p.51-61
Hauptverfasser: Mossa, Federica, Robesti, Daniele, Sumankalai, Ramachandran, Corey, Eva, Titus, Mark, Kang, Yuqi, Zhang, Jianhua, Briganti, Alberto, Montorsi, Francesco, Vellano, Christopher P, Marszalek, Joseph R, Frigo, Daniel E, Logothetis, Christopher J, Gujral, Taranjit S, Dondossola, Eleonora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1
container_start_page 51
container_title Molecular cancer research
container_volume 21
creator Mossa, Federica
Robesti, Daniele
Sumankalai, Ramachandran
Corey, Eva
Titus, Mark
Kang, Yuqi
Zhang, Jianhua
Briganti, Alberto
Montorsi, Francesco
Vellano, Christopher P
Marszalek, Joseph R
Frigo, Daniel E
Logothetis, Christopher J
Gujral, Taranjit S
Dondossola, Eleonora
description Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.
doi_str_mv 10.1158/1541-7786.MCR-22-0250
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715441047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a8991ebebb930334caaaea33cda13381dbd97d2b44edc4087976102af0b63a923</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCI8voEUI5cAl7biZMLEqp4VGoBUeBqrZ0tGKVJiRMk_p5ElApOu9LOzO7OMHYM_Awgyc4hURBrnaVns_FjLETMRcK32B4kiY4liGR76NeYEdsP4Z1zwUGnu2wkUwAhVbbH7uadbb9WFGFVRHPfUjRfkfML7-JJVXSOimhGLdq69C566cqKGrS-9K2nEPkqemjq0GJPG2PlqDlkOwssAx2t6wF7vr56Gt_G0_ubyfhyGjsF0MaY5TmQJWtzyaVUDhEJpXQFgpQZFLbIdSGsUlQ4xTOd6xS4wAW3qcRcyAN28aO76uyyx1DVNliaVeOX2HyZGr35P6n8m3mtP02egchy3QucrgWa-qOj0JqlD47KEiuqu2CE7s1TwNUATX6grv81NLTYrAFuhizM4LMZfDZ9FkYIM2TR807-3rhh_ZovvwF3rIba</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715441047</pqid></control><display><type>article</type><title>Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mossa, Federica ; Robesti, Daniele ; Sumankalai, Ramachandran ; Corey, Eva ; Titus, Mark ; Kang, Yuqi ; Zhang, Jianhua ; Briganti, Alberto ; Montorsi, Francesco ; Vellano, Christopher P ; Marszalek, Joseph R ; Frigo, Daniel E ; Logothetis, Christopher J ; Gujral, Taranjit S ; Dondossola, Eleonora</creator><creatorcontrib>Mossa, Federica ; Robesti, Daniele ; Sumankalai, Ramachandran ; Corey, Eva ; Titus, Mark ; Kang, Yuqi ; Zhang, Jianhua ; Briganti, Alberto ; Montorsi, Francesco ; Vellano, Christopher P ; Marszalek, Joseph R ; Frigo, Daniel E ; Logothetis, Christopher J ; Gujral, Taranjit S ; Dondossola, Eleonora</creatorcontrib><description>Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.</description><identifier>ISSN: 1541-7786</identifier><identifier>EISSN: 1557-3125</identifier><identifier>DOI: 10.1158/1541-7786.MCR-22-0250</identifier><identifier>PMID: 36112348</identifier><language>eng</language><publisher>United States</publisher><subject>Cell Line, Tumor ; Glycolysis ; Humans ; Male ; Oxidative Phosphorylation ; Prostate - pathology ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Proteomics ; Tumor Microenvironment</subject><ispartof>Molecular cancer research, 2023-01, Vol.21 (1), p.51-61</ispartof><rights>2022 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a8991ebebb930334caaaea33cda13381dbd97d2b44edc4087976102af0b63a923</citedby><cites>FETCH-LOGICAL-c411t-a8991ebebb930334caaaea33cda13381dbd97d2b44edc4087976102af0b63a923</cites><orcidid>0000-0001-6486-2169 ; 0000-0001-6916-5418 ; 0000-0002-6365-1711 ; 0000-0003-0246-248X ; 0000-0001-5412-9860 ; 0000-0002-7267-4181 ; 0000-0003-2165-898X ; 0000-0003-2320-3209 ; 0000-0002-4453-3031 ; 0000-0001-9964-521X ; 0000-0002-2178-0494 ; 0000-0002-6643-0818 ; 0000-0002-0713-471X ; 0000-0003-3476-4474 ; 0000-0002-9244-3807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36112348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mossa, Federica</creatorcontrib><creatorcontrib>Robesti, Daniele</creatorcontrib><creatorcontrib>Sumankalai, Ramachandran</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Titus, Mark</creatorcontrib><creatorcontrib>Kang, Yuqi</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Briganti, Alberto</creatorcontrib><creatorcontrib>Montorsi, Francesco</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Marszalek, Joseph R</creatorcontrib><creatorcontrib>Frigo, Daniel E</creatorcontrib><creatorcontrib>Logothetis, Christopher J</creatorcontrib><creatorcontrib>Gujral, Taranjit S</creatorcontrib><creatorcontrib>Dondossola, Eleonora</creatorcontrib><title>Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer</title><title>Molecular cancer research</title><addtitle>Mol Cancer Res</addtitle><description>Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.</description><subject>Cell Line, Tumor</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Male</subject><subject>Oxidative Phosphorylation</subject><subject>Prostate - pathology</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Proteomics</subject><subject>Tumor Microenvironment</subject><issn>1541-7786</issn><issn>1557-3125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCI8voEUI5cAl7biZMLEqp4VGoBUeBqrZ0tGKVJiRMk_p5ElApOu9LOzO7OMHYM_Awgyc4hURBrnaVns_FjLETMRcK32B4kiY4liGR76NeYEdsP4Z1zwUGnu2wkUwAhVbbH7uadbb9WFGFVRHPfUjRfkfML7-JJVXSOimhGLdq69C566cqKGrS-9K2nEPkqemjq0GJPG2PlqDlkOwssAx2t6wF7vr56Gt_G0_ubyfhyGjsF0MaY5TmQJWtzyaVUDhEJpXQFgpQZFLbIdSGsUlQ4xTOd6xS4wAW3qcRcyAN28aO76uyyx1DVNliaVeOX2HyZGr35P6n8m3mtP02egchy3QucrgWa-qOj0JqlD47KEiuqu2CE7s1TwNUATX6grv81NLTYrAFuhizM4LMZfDZ9FkYIM2TR807-3rhh_ZovvwF3rIba</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Mossa, Federica</creator><creator>Robesti, Daniele</creator><creator>Sumankalai, Ramachandran</creator><creator>Corey, Eva</creator><creator>Titus, Mark</creator><creator>Kang, Yuqi</creator><creator>Zhang, Jianhua</creator><creator>Briganti, Alberto</creator><creator>Montorsi, Francesco</creator><creator>Vellano, Christopher P</creator><creator>Marszalek, Joseph R</creator><creator>Frigo, Daniel E</creator><creator>Logothetis, Christopher J</creator><creator>Gujral, Taranjit S</creator><creator>Dondossola, Eleonora</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6486-2169</orcidid><orcidid>https://orcid.org/0000-0001-6916-5418</orcidid><orcidid>https://orcid.org/0000-0002-6365-1711</orcidid><orcidid>https://orcid.org/0000-0003-0246-248X</orcidid><orcidid>https://orcid.org/0000-0001-5412-9860</orcidid><orcidid>https://orcid.org/0000-0002-7267-4181</orcidid><orcidid>https://orcid.org/0000-0003-2165-898X</orcidid><orcidid>https://orcid.org/0000-0003-2320-3209</orcidid><orcidid>https://orcid.org/0000-0002-4453-3031</orcidid><orcidid>https://orcid.org/0000-0001-9964-521X</orcidid><orcidid>https://orcid.org/0000-0002-2178-0494</orcidid><orcidid>https://orcid.org/0000-0002-6643-0818</orcidid><orcidid>https://orcid.org/0000-0002-0713-471X</orcidid><orcidid>https://orcid.org/0000-0003-3476-4474</orcidid><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid></search><sort><creationdate>20230103</creationdate><title>Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer</title><author>Mossa, Federica ; Robesti, Daniele ; Sumankalai, Ramachandran ; Corey, Eva ; Titus, Mark ; Kang, Yuqi ; Zhang, Jianhua ; Briganti, Alberto ; Montorsi, Francesco ; Vellano, Christopher P ; Marszalek, Joseph R ; Frigo, Daniel E ; Logothetis, Christopher J ; Gujral, Taranjit S ; Dondossola, Eleonora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a8991ebebb930334caaaea33cda13381dbd97d2b44edc4087976102af0b63a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Line, Tumor</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Male</topic><topic>Oxidative Phosphorylation</topic><topic>Prostate - pathology</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Proteomics</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mossa, Federica</creatorcontrib><creatorcontrib>Robesti, Daniele</creatorcontrib><creatorcontrib>Sumankalai, Ramachandran</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Titus, Mark</creatorcontrib><creatorcontrib>Kang, Yuqi</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Briganti, Alberto</creatorcontrib><creatorcontrib>Montorsi, Francesco</creatorcontrib><creatorcontrib>Vellano, Christopher P</creatorcontrib><creatorcontrib>Marszalek, Joseph R</creatorcontrib><creatorcontrib>Frigo, Daniel E</creatorcontrib><creatorcontrib>Logothetis, Christopher J</creatorcontrib><creatorcontrib>Gujral, Taranjit S</creatorcontrib><creatorcontrib>Dondossola, Eleonora</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mossa, Federica</au><au>Robesti, Daniele</au><au>Sumankalai, Ramachandran</au><au>Corey, Eva</au><au>Titus, Mark</au><au>Kang, Yuqi</au><au>Zhang, Jianhua</au><au>Briganti, Alberto</au><au>Montorsi, Francesco</au><au>Vellano, Christopher P</au><au>Marszalek, Joseph R</au><au>Frigo, Daniel E</au><au>Logothetis, Christopher J</au><au>Gujral, Taranjit S</au><au>Dondossola, Eleonora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer</atitle><jtitle>Molecular cancer research</jtitle><addtitle>Mol Cancer Res</addtitle><date>2023-01-03</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>51</spage><epage>61</epage><pages>51-61</pages><issn>1541-7786</issn><eissn>1557-3125</eissn><abstract>Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.</abstract><cop>United States</cop><pmid>36112348</pmid><doi>10.1158/1541-7786.MCR-22-0250</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6486-2169</orcidid><orcidid>https://orcid.org/0000-0001-6916-5418</orcidid><orcidid>https://orcid.org/0000-0002-6365-1711</orcidid><orcidid>https://orcid.org/0000-0003-0246-248X</orcidid><orcidid>https://orcid.org/0000-0001-5412-9860</orcidid><orcidid>https://orcid.org/0000-0002-7267-4181</orcidid><orcidid>https://orcid.org/0000-0003-2165-898X</orcidid><orcidid>https://orcid.org/0000-0003-2320-3209</orcidid><orcidid>https://orcid.org/0000-0002-4453-3031</orcidid><orcidid>https://orcid.org/0000-0001-9964-521X</orcidid><orcidid>https://orcid.org/0000-0002-2178-0494</orcidid><orcidid>https://orcid.org/0000-0002-6643-0818</orcidid><orcidid>https://orcid.org/0000-0002-0713-471X</orcidid><orcidid>https://orcid.org/0000-0003-3476-4474</orcidid><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-7786
ispartof Molecular cancer research, 2023-01, Vol.21 (1), p.51-61
issn 1541-7786
1557-3125
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812897
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Cell Line, Tumor
Glycolysis
Humans
Male
Oxidative Phosphorylation
Prostate - pathology
Prostatic Neoplasms - metabolism
Prostatic Neoplasms, Castration-Resistant - metabolism
Proteomics
Tumor Microenvironment
title Subtype and Site Specific-Induced Metabolic Vulnerabilities in Prostate Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subtype%20and%20Site%20Specific-Induced%20Metabolic%20Vulnerabilities%20in%20Prostate%20Cancer&rft.jtitle=Molecular%20cancer%20research&rft.au=Mossa,%20Federica&rft.date=2023-01-03&rft.volume=21&rft.issue=1&rft.spage=51&rft.epage=61&rft.pages=51-61&rft.issn=1541-7786&rft.eissn=1557-3125&rft_id=info:doi/10.1158/1541-7786.MCR-22-0250&rft_dat=%3Cproquest_pubme%3E2715441047%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715441047&rft_id=info:pmid/36112348&rfr_iscdi=true