Selective neural coding of object, feature, and geometry spatial cues in humans

Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal‐dependent system for the representation of geometry and a striatal‐dependent system for the representat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2022-12, Vol.43 (17), p.5281-5295
Hauptverfasser: Ramanoël, Stephen, Durteste, Marion, Bizeul, Alice, Ozier‐Lafontaine, Anthony, Bécu, Marcia, Sahel, José‐Alain, Habas, Christophe, Arleo, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5295
container_issue 17
container_start_page 5281
container_title Human brain mapping
container_volume 43
creator Ramanoël, Stephen
Durteste, Marion
Bizeul, Alice
Ozier‐Lafontaine, Anthony
Bécu, Marcia
Sahel, José‐Alain
Habas, Christophe
Arleo, Angelo
description Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal‐dependent system for the representation of geometry and a striatal‐dependent system for the representation of landmarks. However, this dual‐system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three‐dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object‐based and feature‐based navigation are not equivalent instances of landmark‐based navigation. We examined how the neural networks associated with geometry‐, object‐, and feature‐based spatial navigation compared with a control condition in a two‐choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue‐based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object‐based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature‐based navigation. These findings extend the current view of a dual, juxtaposed hippocampal–striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation. Our article provides novel insights into the neural networks mediating spatial cue processing during navigation including: Complex hippocampal–striatal involvement during visual spatial coding for flexible human navigation behavior. Distinct neural signatures associated with object‐, feature‐, and geometry‐based navigation. Object‐ and feature‐based navigation are not equivalent instances of landmark‐based navigation.
doi_str_mv 10.1002/hbm.26002
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744297248</galeid><sourcerecordid>A744297248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5472-8d636ada0d4ccfdbbea8d6dd99b59f80c9ecc27190d36d7198a7024a2dd507373</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEoqVw4A8gS1xA2mxtx4njS6WlAhZpUQ_A2XLsya5Xib3YyaL99zikFFqBfBhr5pl3PjRZ9pLgJcGYXu6afkmr9HuUnRMseI6JKB5P_6rMBePkLHsW4x5jQkpMnmZnRcl5VVJ2nt18gQ70YI-AHIxBdUh7Y90W-Rb5Zp9CC9SCGsYAC6ScQVvwPQzhhOJBDXbiR4jIOrQbe-Xi8-xJq7oIL27tRfbtw_uv1-t8c_Px0_Vqk-uScZrXpioqZRQ2TOvWNA2o5DJGiKYUbY21AK0pJwKbojLJ1opjyhQ1psS84MVFdjXrHsamB6PBDal5eQi2V-EkvbLyfsTZndz6oxQ1oZSRJLCYBXYP0tarjbQuQuglLjgtWFkdJ_zNbb3gv6eJB9nbqKHrlAM_RkmrmmFRczKhrx-gez8Gl7YhKS_qggnK2B9qqzpIBVuf2tSTqFxxxqjglNWJWv6DSs9Ab7V30Nrkv5fwdk7QwccYoL2bjWA5HYtMxyJ_HUtiX_29wzvy93Uk4HIGfqQqp_8ryfW7z7PkT-Kgxtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738349244</pqid></control><display><type>article</type><title>Selective neural coding of object, feature, and geometry spatial cues in humans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Ramanoël, Stephen ; Durteste, Marion ; Bizeul, Alice ; Ozier‐Lafontaine, Anthony ; Bécu, Marcia ; Sahel, José‐Alain ; Habas, Christophe ; Arleo, Angelo</creator><creatorcontrib>Ramanoël, Stephen ; Durteste, Marion ; Bizeul, Alice ; Ozier‐Lafontaine, Anthony ; Bécu, Marcia ; Sahel, José‐Alain ; Habas, Christophe ; Arleo, Angelo</creatorcontrib><description>Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal‐dependent system for the representation of geometry and a striatal‐dependent system for the representation of landmarks. However, this dual‐system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three‐dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object‐based and feature‐based navigation are not equivalent instances of landmark‐based navigation. We examined how the neural networks associated with geometry‐, object‐, and feature‐based spatial navigation compared with a control condition in a two‐choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue‐based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object‐based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature‐based navigation. These findings extend the current view of a dual, juxtaposed hippocampal–striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation. Our article provides novel insights into the neural networks mediating spatial cue processing during navigation including: Complex hippocampal–striatal involvement during visual spatial coding for flexible human navigation behavior. Distinct neural signatures associated with object‐, feature‐, and geometry‐based navigation. Object‐ and feature‐based navigation are not equivalent instances of landmark‐based navigation.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26002</identifier><identifier>PMID: 35776524</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain mapping ; Coding ; Corpus Striatum - diagnostic imaging ; Cues ; Functional magnetic resonance imaging ; functional MRI ; Geometry ; Hippocampus ; Hippocampus - diagnostic imaging ; Hippocampus - physiology ; Humans ; Hypotheses ; Information processing ; landmark ; Life Sciences ; navigation ; Navigation behavior ; Neostriatum ; Neural coding ; Neural networks ; Neurobiology ; Neurons and Cognition ; Representations ; Space Perception - physiology ; spatial cues ; Spatial data ; Spatial Navigation - physiology ; striatum ; Visual stimuli</subject><ispartof>Human brain mapping, 2022-12, Vol.43 (17), p.5281-5295</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5472-8d636ada0d4ccfdbbea8d6dd99b59f80c9ecc27190d36d7198a7024a2dd507373</citedby><cites>FETCH-LOGICAL-c5472-8d636ada0d4ccfdbbea8d6dd99b59f80c9ecc27190d36d7198a7024a2dd507373</cites><orcidid>0000-0003-4735-1097 ; 0000-0001-6989-3589 ; 0000-0002-1990-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812241/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812241/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35776524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03723456$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramanoël, Stephen</creatorcontrib><creatorcontrib>Durteste, Marion</creatorcontrib><creatorcontrib>Bizeul, Alice</creatorcontrib><creatorcontrib>Ozier‐Lafontaine, Anthony</creatorcontrib><creatorcontrib>Bécu, Marcia</creatorcontrib><creatorcontrib>Sahel, José‐Alain</creatorcontrib><creatorcontrib>Habas, Christophe</creatorcontrib><creatorcontrib>Arleo, Angelo</creatorcontrib><title>Selective neural coding of object, feature, and geometry spatial cues in humans</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal‐dependent system for the representation of geometry and a striatal‐dependent system for the representation of landmarks. However, this dual‐system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three‐dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object‐based and feature‐based navigation are not equivalent instances of landmark‐based navigation. We examined how the neural networks associated with geometry‐, object‐, and feature‐based spatial navigation compared with a control condition in a two‐choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue‐based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object‐based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature‐based navigation. These findings extend the current view of a dual, juxtaposed hippocampal–striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation. Our article provides novel insights into the neural networks mediating spatial cue processing during navigation including: Complex hippocampal–striatal involvement during visual spatial coding for flexible human navigation behavior. Distinct neural signatures associated with object‐, feature‐, and geometry‐based navigation. Object‐ and feature‐based navigation are not equivalent instances of landmark‐based navigation.</description><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Coding</subject><subject>Corpus Striatum - diagnostic imaging</subject><subject>Cues</subject><subject>Functional magnetic resonance imaging</subject><subject>functional MRI</subject><subject>Geometry</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Information processing</subject><subject>landmark</subject><subject>Life Sciences</subject><subject>navigation</subject><subject>Navigation behavior</subject><subject>Neostriatum</subject><subject>Neural coding</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Representations</subject><subject>Space Perception - physiology</subject><subject>spatial cues</subject><subject>Spatial data</subject><subject>Spatial Navigation - physiology</subject><subject>striatum</subject><subject>Visual stimuli</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kk1v1DAQhiMEoqVw4A8gS1xA2mxtx4njS6WlAhZpUQ_A2XLsya5Xib3YyaL99zikFFqBfBhr5pl3PjRZ9pLgJcGYXu6afkmr9HuUnRMseI6JKB5P_6rMBePkLHsW4x5jQkpMnmZnRcl5VVJ2nt18gQ70YI-AHIxBdUh7Y90W-Rb5Zp9CC9SCGsYAC6ScQVvwPQzhhOJBDXbiR4jIOrQbe-Xi8-xJq7oIL27tRfbtw_uv1-t8c_Px0_Vqk-uScZrXpioqZRQ2TOvWNA2o5DJGiKYUbY21AK0pJwKbojLJ1opjyhQ1psS84MVFdjXrHsamB6PBDal5eQi2V-EkvbLyfsTZndz6oxQ1oZSRJLCYBXYP0tarjbQuQuglLjgtWFkdJ_zNbb3gv6eJB9nbqKHrlAM_RkmrmmFRczKhrx-gez8Gl7YhKS_qggnK2B9qqzpIBVuf2tSTqFxxxqjglNWJWv6DSs9Ab7V30Nrkv5fwdk7QwccYoL2bjWA5HYtMxyJ_HUtiX_29wzvy93Uk4HIGfqQqp_8ryfW7z7PkT-Kgxtw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ramanoël, Stephen</creator><creator>Durteste, Marion</creator><creator>Bizeul, Alice</creator><creator>Ozier‐Lafontaine, Anthony</creator><creator>Bécu, Marcia</creator><creator>Sahel, José‐Alain</creator><creator>Habas, Christophe</creator><creator>Arleo, Angelo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4735-1097</orcidid><orcidid>https://orcid.org/0000-0001-6989-3589</orcidid><orcidid>https://orcid.org/0000-0002-1990-1971</orcidid></search><sort><creationdate>20221201</creationdate><title>Selective neural coding of object, feature, and geometry spatial cues in humans</title><author>Ramanoël, Stephen ; Durteste, Marion ; Bizeul, Alice ; Ozier‐Lafontaine, Anthony ; Bécu, Marcia ; Sahel, José‐Alain ; Habas, Christophe ; Arleo, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5472-8d636ada0d4ccfdbbea8d6dd99b59f80c9ecc27190d36d7198a7024a2dd507373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Coding</topic><topic>Corpus Striatum - diagnostic imaging</topic><topic>Cues</topic><topic>Functional magnetic resonance imaging</topic><topic>functional MRI</topic><topic>Geometry</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Information processing</topic><topic>landmark</topic><topic>Life Sciences</topic><topic>navigation</topic><topic>Navigation behavior</topic><topic>Neostriatum</topic><topic>Neural coding</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Representations</topic><topic>Space Perception - physiology</topic><topic>spatial cues</topic><topic>Spatial data</topic><topic>Spatial Navigation - physiology</topic><topic>striatum</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanoël, Stephen</creatorcontrib><creatorcontrib>Durteste, Marion</creatorcontrib><creatorcontrib>Bizeul, Alice</creatorcontrib><creatorcontrib>Ozier‐Lafontaine, Anthony</creatorcontrib><creatorcontrib>Bécu, Marcia</creatorcontrib><creatorcontrib>Sahel, José‐Alain</creatorcontrib><creatorcontrib>Habas, Christophe</creatorcontrib><creatorcontrib>Arleo, Angelo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanoël, Stephen</au><au>Durteste, Marion</au><au>Bizeul, Alice</au><au>Ozier‐Lafontaine, Anthony</au><au>Bécu, Marcia</au><au>Sahel, José‐Alain</au><au>Habas, Christophe</au><au>Arleo, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective neural coding of object, feature, and geometry spatial cues in humans</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>43</volume><issue>17</issue><spage>5281</spage><epage>5295</epage><pages>5281-5295</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Orienting in space requires the processing of visual spatial cues. The dominant hypothesis about the brain structures mediating the coding of spatial cues stipulates the existence of a hippocampal‐dependent system for the representation of geometry and a striatal‐dependent system for the representation of landmarks. However, this dual‐system hypothesis is based on paradigms that presented spatial cues conveying either conflicting or ambiguous spatial information and that used the term landmark to refer to both discrete three‐dimensional objects and wall features. Here, we test the hypothesis of complex activation patterns in the hippocampus and the striatum during visual coding. We also postulate that object‐based and feature‐based navigation are not equivalent instances of landmark‐based navigation. We examined how the neural networks associated with geometry‐, object‐, and feature‐based spatial navigation compared with a control condition in a two‐choice behavioral paradigm using fMRI. We showed that the hippocampus was involved in all three types of cue‐based navigation, whereas the striatum was more strongly recruited in the presence of geometric cues than object or feature cues. We also found that unique, specific neural signatures were associated with each spatial cue. Object‐based navigation elicited a widespread pattern of activity in temporal and occipital regions relative to feature‐based navigation. These findings extend the current view of a dual, juxtaposed hippocampal–striatal system for visual spatial coding in humans. They also provide novel insights into the neural networks mediating object versus feature spatial coding, suggesting a need to distinguish these two types of landmarks in the context of human navigation. Our article provides novel insights into the neural networks mediating spatial cue processing during navigation including: Complex hippocampal–striatal involvement during visual spatial coding for flexible human navigation behavior. Distinct neural signatures associated with object‐, feature‐, and geometry‐based navigation. Object‐ and feature‐based navigation are not equivalent instances of landmark‐based navigation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35776524</pmid><doi>10.1002/hbm.26002</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4735-1097</orcidid><orcidid>https://orcid.org/0000-0001-6989-3589</orcidid><orcidid>https://orcid.org/0000-0002-1990-1971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2022-12, Vol.43 (17), p.5281-5295
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812241
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; PubMed Central
subjects Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Coding
Corpus Striatum - diagnostic imaging
Cues
Functional magnetic resonance imaging
functional MRI
Geometry
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - physiology
Humans
Hypotheses
Information processing
landmark
Life Sciences
navigation
Navigation behavior
Neostriatum
Neural coding
Neural networks
Neurobiology
Neurons and Cognition
Representations
Space Perception - physiology
spatial cues
Spatial data
Spatial Navigation - physiology
striatum
Visual stimuli
title Selective neural coding of object, feature, and geometry spatial cues in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20neural%20coding%20of%20object,%20feature,%20and%20geometry%20spatial%20cues%20in%20humans&rft.jtitle=Human%20brain%20mapping&rft.au=Ramano%C3%ABl,%20Stephen&rft.date=2022-12-01&rft.volume=43&rft.issue=17&rft.spage=5281&rft.epage=5295&rft.pages=5281-5295&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26002&rft_dat=%3Cgale_pubme%3EA744297248%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738349244&rft_id=info:pmid/35776524&rft_galeid=A744297248&rfr_iscdi=true