Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes
The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR)...
Gespeichert in:
Veröffentlicht in: | Cell systems 2023-01, Vol.14 (1), p.72-83.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83.e5 |
---|---|
container_issue | 1 |
container_start_page | 72 |
container_title | Cell systems |
container_volume | 14 |
creator | Gfeller, David Schmidt, Julien Croce, Giancarlo Guillaume, Philippe Bobisse, Sara Genolet, Raphael Queiroz, Lise Cesbron, Julien Racle, Julien Harari, Alexandre |
description | The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.
[Display omitted]
•Collection and curation of a large dataset of HLA-I ligands and neo-epitopes•Improved predictions of antigen presentation (MixMHCpred2.2)•Improved predictions of TCR recognition (PRIME2.0)•Identification of SARS-Cov-2 CD8+ T cell epitopes
We collected and curated large datasets of HLA-I ligands and neo-epitopes, which were used to train machine learning tools to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). Applying these tools to SARS-CoV-2 enabled us to identify potent CD8 T cell epitopes with cross-reactivity with other coronaviruses. |
doi_str_mv | 10.1016/j.cels.2022.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405471222004707</els_id><sourcerecordid>2761973382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c672dadeecb06545298284a6555f9d0f36983e21228c5a54df32969b4bbe27183</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEolXpC3BAPiKhBHsSO46EkKpQ6EpdgbYLV8txJluvduPUzi70JfrMON2yggsnW__888-MviR5zWjGKBPv15nBTciAAmQMMkrhWXIKBeVpUQJ9fvwzOEnOQ1hTSllRRRFeJie5EDTnMj9NHmbbwbs9tmTw2FozWtcH4jqi-9GusJ_kgP2op0IUW7KsF8SjcavePmo_7XhL5vbX_KqeIiCDR9u3xWx-GfeK3j3qDRncGGPIzcXiJq3djxRI_Um-I8s0nrEhONjRDRheJS86vQl4_vSeJd8_Xy7rq_T665dZfXGdmoLzMTWihFa3iKahghccKgmy0IJz3lUt7XJRyRyBAUjDNS_aLodKVE3RNAglk_lZ8vGQO-yaLbYmrub1Rg3ebrW_V05b9W-lt7dq5faqkowJWcSAt08B3t3tMIxqa8N0iu7R7YKCUrCqzHMJ0QoHq_EuBI_dcQyjamKp1mpiqSaWioGKLGPTm78XPLb8IRcNHw6G2Il7i14FY7E3EWKkM6rW2f_l_wbJeK9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761973382</pqid></control><display><type>article</type><title>Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Gfeller, David ; Schmidt, Julien ; Croce, Giancarlo ; Guillaume, Philippe ; Bobisse, Sara ; Genolet, Raphael ; Queiroz, Lise ; Cesbron, Julien ; Racle, Julien ; Harari, Alexandre</creator><creatorcontrib>Gfeller, David ; Schmidt, Julien ; Croce, Giancarlo ; Guillaume, Philippe ; Bobisse, Sara ; Genolet, Raphael ; Queiroz, Lise ; Cesbron, Julien ; Racle, Julien ; Harari, Alexandre</creatorcontrib><description>The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.
[Display omitted]
•Collection and curation of a large dataset of HLA-I ligands and neo-epitopes•Improved predictions of antigen presentation (MixMHCpred2.2)•Improved predictions of TCR recognition (PRIME2.0)•Identification of SARS-Cov-2 CD8+ T cell epitopes
We collected and curated large datasets of HLA-I ligands and neo-epitopes, which were used to train machine learning tools to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). Applying these tools to SARS-CoV-2 enabled us to identify potent CD8 T cell epitopes with cross-reactivity with other coronaviruses.</description><identifier>ISSN: 2405-4712</identifier><identifier>EISSN: 2405-4720</identifier><identifier>DOI: 10.1016/j.cels.2022.12.002</identifier><identifier>PMID: 36603583</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antigen Presentation ; CD8+ T cell epitopes ; CD8-Positive T-Lymphocytes ; computational biology ; COVID-19 ; epitope predictions ; Epitopes, T-Lymphocyte ; HLA Antigens ; HLA-I peptidomics ; Humans ; immunology ; Ligands ; machine learning ; Receptors, Antigen, T-Cell ; SARS-CoV-2</subject><ispartof>Cell systems, 2023-01, Vol.14 (1), p.72-83.e5</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>2022 Elsevier Inc. 2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c672dadeecb06545298284a6555f9d0f36983e21228c5a54df32969b4bbe27183</citedby><cites>FETCH-LOGICAL-c455t-c672dadeecb06545298284a6555f9d0f36983e21228c5a54df32969b4bbe27183</cites><orcidid>0000-0002-3952-0930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36603583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gfeller, David</creatorcontrib><creatorcontrib>Schmidt, Julien</creatorcontrib><creatorcontrib>Croce, Giancarlo</creatorcontrib><creatorcontrib>Guillaume, Philippe</creatorcontrib><creatorcontrib>Bobisse, Sara</creatorcontrib><creatorcontrib>Genolet, Raphael</creatorcontrib><creatorcontrib>Queiroz, Lise</creatorcontrib><creatorcontrib>Cesbron, Julien</creatorcontrib><creatorcontrib>Racle, Julien</creatorcontrib><creatorcontrib>Harari, Alexandre</creatorcontrib><title>Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes</title><title>Cell systems</title><addtitle>Cell Syst</addtitle><description>The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.
[Display omitted]
•Collection and curation of a large dataset of HLA-I ligands and neo-epitopes•Improved predictions of antigen presentation (MixMHCpred2.2)•Improved predictions of TCR recognition (PRIME2.0)•Identification of SARS-Cov-2 CD8+ T cell epitopes
We collected and curated large datasets of HLA-I ligands and neo-epitopes, which were used to train machine learning tools to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). Applying these tools to SARS-CoV-2 enabled us to identify potent CD8 T cell epitopes with cross-reactivity with other coronaviruses.</description><subject>Antigen Presentation</subject><subject>CD8+ T cell epitopes</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>computational biology</subject><subject>COVID-19</subject><subject>epitope predictions</subject><subject>Epitopes, T-Lymphocyte</subject><subject>HLA Antigens</subject><subject>HLA-I peptidomics</subject><subject>Humans</subject><subject>immunology</subject><subject>Ligands</subject><subject>machine learning</subject><subject>Receptors, Antigen, T-Cell</subject><subject>SARS-CoV-2</subject><issn>2405-4712</issn><issn>2405-4720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhiMEolXpC3BAPiKhBHsSO46EkKpQ6EpdgbYLV8txJluvduPUzi70JfrMON2yggsnW__888-MviR5zWjGKBPv15nBTciAAmQMMkrhWXIKBeVpUQJ9fvwzOEnOQ1hTSllRRRFeJie5EDTnMj9NHmbbwbs9tmTw2FozWtcH4jqi-9GusJ_kgP2op0IUW7KsF8SjcavePmo_7XhL5vbX_KqeIiCDR9u3xWx-GfeK3j3qDRncGGPIzcXiJq3djxRI_Um-I8s0nrEhONjRDRheJS86vQl4_vSeJd8_Xy7rq_T665dZfXGdmoLzMTWihFa3iKahghccKgmy0IJz3lUt7XJRyRyBAUjDNS_aLodKVE3RNAglk_lZ8vGQO-yaLbYmrub1Rg3ebrW_V05b9W-lt7dq5faqkowJWcSAt08B3t3tMIxqa8N0iu7R7YKCUrCqzHMJ0QoHq_EuBI_dcQyjamKp1mpiqSaWioGKLGPTm78XPLb8IRcNHw6G2Il7i14FY7E3EWKkM6rW2f_l_wbJeK9w</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Gfeller, David</creator><creator>Schmidt, Julien</creator><creator>Croce, Giancarlo</creator><creator>Guillaume, Philippe</creator><creator>Bobisse, Sara</creator><creator>Genolet, Raphael</creator><creator>Queiroz, Lise</creator><creator>Cesbron, Julien</creator><creator>Racle, Julien</creator><creator>Harari, Alexandre</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3952-0930</orcidid></search><sort><creationdate>20230118</creationdate><title>Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes</title><author>Gfeller, David ; Schmidt, Julien ; Croce, Giancarlo ; Guillaume, Philippe ; Bobisse, Sara ; Genolet, Raphael ; Queiroz, Lise ; Cesbron, Julien ; Racle, Julien ; Harari, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c672dadeecb06545298284a6555f9d0f36983e21228c5a54df32969b4bbe27183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antigen Presentation</topic><topic>CD8+ T cell epitopes</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>computational biology</topic><topic>COVID-19</topic><topic>epitope predictions</topic><topic>Epitopes, T-Lymphocyte</topic><topic>HLA Antigens</topic><topic>HLA-I peptidomics</topic><topic>Humans</topic><topic>immunology</topic><topic>Ligands</topic><topic>machine learning</topic><topic>Receptors, Antigen, T-Cell</topic><topic>SARS-CoV-2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gfeller, David</creatorcontrib><creatorcontrib>Schmidt, Julien</creatorcontrib><creatorcontrib>Croce, Giancarlo</creatorcontrib><creatorcontrib>Guillaume, Philippe</creatorcontrib><creatorcontrib>Bobisse, Sara</creatorcontrib><creatorcontrib>Genolet, Raphael</creatorcontrib><creatorcontrib>Queiroz, Lise</creatorcontrib><creatorcontrib>Cesbron, Julien</creatorcontrib><creatorcontrib>Racle, Julien</creatorcontrib><creatorcontrib>Harari, Alexandre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gfeller, David</au><au>Schmidt, Julien</au><au>Croce, Giancarlo</au><au>Guillaume, Philippe</au><au>Bobisse, Sara</au><au>Genolet, Raphael</au><au>Queiroz, Lise</au><au>Cesbron, Julien</au><au>Racle, Julien</au><au>Harari, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes</atitle><jtitle>Cell systems</jtitle><addtitle>Cell Syst</addtitle><date>2023-01-18</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>72</spage><epage>83.e5</epage><pages>72-83.e5</pages><issn>2405-4712</issn><eissn>2405-4720</eissn><abstract>The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.
[Display omitted]
•Collection and curation of a large dataset of HLA-I ligands and neo-epitopes•Improved predictions of antigen presentation (MixMHCpred2.2)•Improved predictions of TCR recognition (PRIME2.0)•Identification of SARS-Cov-2 CD8+ T cell epitopes
We collected and curated large datasets of HLA-I ligands and neo-epitopes, which were used to train machine learning tools to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). Applying these tools to SARS-CoV-2 enabled us to identify potent CD8 T cell epitopes with cross-reactivity with other coronaviruses.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36603583</pmid><doi>10.1016/j.cels.2022.12.002</doi><orcidid>https://orcid.org/0000-0002-3952-0930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-4712 |
ispartof | Cell systems, 2023-01, Vol.14 (1), p.72-83.e5 |
issn | 2405-4712 2405-4720 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811684 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Antigen Presentation CD8+ T cell epitopes CD8-Positive T-Lymphocytes computational biology COVID-19 epitope predictions Epitopes, T-Lymphocyte HLA Antigens HLA-I peptidomics Humans immunology Ligands machine learning Receptors, Antigen, T-Cell SARS-CoV-2 |
title | Improved predictions of antigen presentation and TCR recognition with MixMHCpred2.2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20predictions%20of%20antigen%20presentation%20and%20TCR%20recognition%20with%20MixMHCpred2.2%20and%20PRIME2.0%20reveal%20potent%20SARS-CoV-2%20CD8+%20T-cell%20epitopes&rft.jtitle=Cell%20systems&rft.au=Gfeller,%20David&rft.date=2023-01-18&rft.volume=14&rft.issue=1&rft.spage=72&rft.epage=83.e5&rft.pages=72-83.e5&rft.issn=2405-4712&rft.eissn=2405-4720&rft_id=info:doi/10.1016/j.cels.2022.12.002&rft_dat=%3Cproquest_pubme%3E2761973382%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761973382&rft_id=info:pmid/36603583&rft_els_id=S2405471222004707&rfr_iscdi=true |