Homologous pairing in short double-stranded DNA-grafted colloidal microspheres

Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2022-12, Vol.121 (24), p.4819-4829
Hauptverfasser: Chauhan, Neha, Karanastasis, Apostolos, Ullal, Chaitanya K., Wang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4829
container_issue 24
container_start_page 4819
container_title Biophysical journal
container_volume 121
creator Chauhan, Neha
Karanastasis, Apostolos
Ullal, Chaitanya K.
Wang, Xing
description Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.
doi_str_mv 10.1016/j.bpj.2022.09.037
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349522008141</els_id><sourcerecordid>2721637000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRAVXQofwAXlyCVh7Dh2LCSkqrS0UlUucLYce7LrlRMHO1uJv8erLRVcOM1I8-bNm_cIeUehoUDFx30zLPuGAWMNqAZa-YJsaMdZDdCLl2QDAKJuuerOyeuc9wCUdUBfkfNWUCWg6zfk4TZOMcRtPORqMT75eVv5ucq7mNbKxcMQsM5rMrNDV315uKy3yYxr6W0MIXpnQjV5m2JedpgwvyFnowkZ3z7VC_Lj5vr71W19_-3r3dXlfW15R9faCSYYH5zpJTPS9JxyOxg6jhKt5E62ygqQ6LgZqegBjVDQKaoM9pZz07cX5POJdzkMEzqLc9EY9JL8ZNIvHY3X_05mv9Pb-KhVT6kQbSH48ESQ4s8D5lVPPlsMwcxYvNBMMipaWRwsUHqCHt_MCcfnMxT0MQe91yUHfcxBg9Ilh7Lz_m99zxt_jC-ATycAFpcePSadrcfZovMJ7apd9P-h_w2ZIpqF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721637000</pqid></control><display><type>article</type><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</creator><creatorcontrib>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</creatorcontrib><description>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.09.037</identifier><identifier>PMID: 36196058</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA - chemistry ; DNA, Single-Stranded ; Microspheres ; Nucleotides</subject><ispartof>Biophysical journal, 2022-12, Vol.121 (24), p.4819-4829</ispartof><rights>2022 Biophysical Society</rights><rights>Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 Biophysical Society. 2022 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</citedby><cites>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811663/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2022.09.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36196058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Karanastasis, Apostolos</creatorcontrib><creatorcontrib>Ullal, Chaitanya K.</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</description><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded</subject><subject>Microspheres</subject><subject>Nucleotides</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRAVXQofwAXlyCVh7Dh2LCSkqrS0UlUucLYce7LrlRMHO1uJv8erLRVcOM1I8-bNm_cIeUehoUDFx30zLPuGAWMNqAZa-YJsaMdZDdCLl2QDAKJuuerOyeuc9wCUdUBfkfNWUCWg6zfk4TZOMcRtPORqMT75eVv5ucq7mNbKxcMQsM5rMrNDV315uKy3yYxr6W0MIXpnQjV5m2JedpgwvyFnowkZ3z7VC_Lj5vr71W19_-3r3dXlfW15R9faCSYYH5zpJTPS9JxyOxg6jhKt5E62ygqQ6LgZqegBjVDQKaoM9pZz07cX5POJdzkMEzqLc9EY9JL8ZNIvHY3X_05mv9Pb-KhVT6kQbSH48ESQ4s8D5lVPPlsMwcxYvNBMMipaWRwsUHqCHt_MCcfnMxT0MQe91yUHfcxBg9Ilh7Lz_m99zxt_jC-ATycAFpcePSadrcfZovMJ7apd9P-h_w2ZIpqF</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Chauhan, Neha</creator><creator>Karanastasis, Apostolos</creator><creator>Ullal, Chaitanya K.</creator><creator>Wang, Xing</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221220</creationdate><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><author>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded</topic><topic>Microspheres</topic><topic>Nucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Karanastasis, Apostolos</creatorcontrib><creatorcontrib>Ullal, Chaitanya K.</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Neha</au><au>Karanastasis, Apostolos</au><au>Ullal, Chaitanya K.</au><au>Wang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>121</volume><issue>24</issue><spage>4819</spage><epage>4829</epage><pages>4819-4829</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36196058</pmid><doi>10.1016/j.bpj.2022.09.037</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2022-12, Vol.121 (24), p.4819-4829
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811663
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects DNA - chemistry
DNA, Single-Stranded
Microspheres
Nucleotides
title Homologous pairing in short double-stranded DNA-grafted colloidal microspheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homologous%20pairing%20in%20short%20double-stranded%20DNA-grafted%20colloidal%20microspheres&rft.jtitle=Biophysical%20journal&rft.au=Chauhan,%20Neha&rft.date=2022-12-20&rft.volume=121&rft.issue=24&rft.spage=4819&rft.epage=4829&rft.pages=4819-4829&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.09.037&rft_dat=%3Cproquest_pubme%3E2721637000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721637000&rft_id=info:pmid/36196058&rft_els_id=S0006349522008141&rfr_iscdi=true