Homologous pairing in short double-stranded DNA-grafted colloidal microspheres
Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic s...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2022-12, Vol.121 (24), p.4819-4829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4829 |
---|---|
container_issue | 24 |
container_start_page | 4819 |
container_title | Biophysical journal |
container_volume | 121 |
creator | Chauhan, Neha Karanastasis, Apostolos Ullal, Chaitanya K. Wang, Xing |
description | Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP. |
doi_str_mv | 10.1016/j.bpj.2022.09.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349522008141</els_id><sourcerecordid>2721637000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRAVXQofwAXlyCVh7Dh2LCSkqrS0UlUucLYce7LrlRMHO1uJv8erLRVcOM1I8-bNm_cIeUehoUDFx30zLPuGAWMNqAZa-YJsaMdZDdCLl2QDAKJuuerOyeuc9wCUdUBfkfNWUCWg6zfk4TZOMcRtPORqMT75eVv5ucq7mNbKxcMQsM5rMrNDV315uKy3yYxr6W0MIXpnQjV5m2JedpgwvyFnowkZ3z7VC_Lj5vr71W19_-3r3dXlfW15R9faCSYYH5zpJTPS9JxyOxg6jhKt5E62ygqQ6LgZqegBjVDQKaoM9pZz07cX5POJdzkMEzqLc9EY9JL8ZNIvHY3X_05mv9Pb-KhVT6kQbSH48ESQ4s8D5lVPPlsMwcxYvNBMMipaWRwsUHqCHt_MCcfnMxT0MQe91yUHfcxBg9Ilh7Lz_m99zxt_jC-ATycAFpcePSadrcfZovMJ7apd9P-h_w2ZIpqF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721637000</pqid></control><display><type>article</type><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</creator><creatorcontrib>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</creatorcontrib><description>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.09.037</identifier><identifier>PMID: 36196058</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>DNA - chemistry ; DNA, Single-Stranded ; Microspheres ; Nucleotides</subject><ispartof>Biophysical journal, 2022-12, Vol.121 (24), p.4819-4829</ispartof><rights>2022 Biophysical Society</rights><rights>Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 Biophysical Society. 2022 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</citedby><cites>FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811663/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2022.09.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36196058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Karanastasis, Apostolos</creatorcontrib><creatorcontrib>Ullal, Chaitanya K.</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</description><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded</subject><subject>Microspheres</subject><subject>Nucleotides</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRAVXQofwAXlyCVh7Dh2LCSkqrS0UlUucLYce7LrlRMHO1uJv8erLRVcOM1I8-bNm_cIeUehoUDFx30zLPuGAWMNqAZa-YJsaMdZDdCLl2QDAKJuuerOyeuc9wCUdUBfkfNWUCWg6zfk4TZOMcRtPORqMT75eVv5ucq7mNbKxcMQsM5rMrNDV315uKy3yYxr6W0MIXpnQjV5m2JedpgwvyFnowkZ3z7VC_Lj5vr71W19_-3r3dXlfW15R9faCSYYH5zpJTPS9JxyOxg6jhKt5E62ygqQ6LgZqegBjVDQKaoM9pZz07cX5POJdzkMEzqLc9EY9JL8ZNIvHY3X_05mv9Pb-KhVT6kQbSH48ESQ4s8D5lVPPlsMwcxYvNBMMipaWRwsUHqCHt_MCcfnMxT0MQe91yUHfcxBg9Ilh7Lz_m99zxt_jC-ATycAFpcePSadrcfZovMJ7apd9P-h_w2ZIpqF</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Chauhan, Neha</creator><creator>Karanastasis, Apostolos</creator><creator>Ullal, Chaitanya K.</creator><creator>Wang, Xing</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221220</creationdate><title>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</title><author>Chauhan, Neha ; Karanastasis, Apostolos ; Ullal, Chaitanya K. ; Wang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d62624bda872a7a8414cba1ff7ec74d739c607ed4af1680ea6905919ae8c44a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded</topic><topic>Microspheres</topic><topic>Nucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Neha</creatorcontrib><creatorcontrib>Karanastasis, Apostolos</creatorcontrib><creatorcontrib>Ullal, Chaitanya K.</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Neha</au><au>Karanastasis, Apostolos</au><au>Ullal, Chaitanya K.</au><au>Wang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homologous pairing in short double-stranded DNA-grafted colloidal microspheres</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>121</volume><issue>24</issue><spage>4819</spage><epage>4829</epage><pages>4819-4829</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Homologous pairing (HP), i.e., the pairing of similar or identical double-stranded DNA, is an insufficiently understood fundamental biological process. HP is now understood to also occur without protein mediation, but crucial mechanistic details remain poorly established. Unfortunately, systematic studies of sequence dependence are not practical due to the enormous number of nucleotide permutations and multiple possible conformations involved in existing biophysical strategies even when using as few as 150 basepairs. Here, we show that HP can occur in DNA as short as 18 basepairs in a colloidal microparticle-based system. Exemplary systematic studies include resolving opposing reports of the impact of % AT composition, validating the impact of nucleotide order and triplet framework and revealing isotropic bendability to be crucial for HP. These studies are enabled by statistical analysis of crystal size and fraction within coexisting fluid-crystal phases of double-stranded DNA-grafted colloidal microspheres, where crystallization is predicated by HP.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36196058</pmid><doi>10.1016/j.bpj.2022.09.037</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2022-12, Vol.121 (24), p.4819-4829 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811663 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central |
subjects | DNA - chemistry DNA, Single-Stranded Microspheres Nucleotides |
title | Homologous pairing in short double-stranded DNA-grafted colloidal microspheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homologous%20pairing%20in%20short%20double-stranded%20DNA-grafted%20colloidal%20microspheres&rft.jtitle=Biophysical%20journal&rft.au=Chauhan,%20Neha&rft.date=2022-12-20&rft.volume=121&rft.issue=24&rft.spage=4819&rft.epage=4829&rft.pages=4819-4829&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.09.037&rft_dat=%3Cproquest_pubme%3E2721637000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721637000&rft_id=info:pmid/36196058&rft_els_id=S0006349522008141&rfr_iscdi=true |