Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice
Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibi...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2023-01, Vol.42 (1), p.e110518-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e110518 |
container_title | The EMBO journal |
container_volume | 42 |
creator | Guo, Xiaoyu Zhang, Dajian Wang, Zhongliang Xu, Shujuan Batistič, Oliver Steinhorst, Leonie Li, Hao Weng, Yuxiang Ren, Dongtao Kudla, Jörg Xu, Yunyuan Chong, Kang |
description | Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that
Oryza sativa
Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of
OsCRT3
knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca
2+
signal generation to facilitate chilling tolerance in rice.
Synopsis
Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity.
The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice.
OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress.
Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7.
A cold‐elicited Ca
2+
signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane.
Graphical Abstract
A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress. |
doi_str_mv | 10.15252/embj.2021110518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760460791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhzglZ4pzW49hxIiEkuipQKCpC5Ww5zmTrVWJv7QTUGz-B38gvwdstLT0gTpbG733zNI-Q58AOQHLJD3Fs1weccQBgEuoHZAGiYgVnSj4kC8YrKATUzR55ktKaMSZrBY_JXlmVAqSSC3K5DEP368dP57vZYketGSJOzs6D8_QsLb-cl9QG34c4mskFbwZqL4xfYaKbGMYw4VZ18vmjom1mOL-ixnd0wnGD0UxzRJrQp-08A6Oz-JQ86s2Q8NnNu0--vj0-X74vTs_enSzfnBZWQlMXsjGMK8SWKcW6trFKdkwKrG0NbddIBnXPq8bKtm2UUKrnAkvBuKgVlwrKcp-83nE3cztiZ9FP0Qx6E91o4pUOxun7P95d6FX4ppsaoOIiA17eAGK4nDFNeh3mmC-QNFcVy3dWDWQV26lsDClF7G83ANPXJeltSfqupGx58XeyW8OfVrLg1U7w3Q149V-gPv509OEeH3b2lJ25qngX_J-ZfgO-H7CP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760460791</pqid></control><display><type>article</type><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</creator><creatorcontrib>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</creatorcontrib><description>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that
Oryza sativa
Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of
OsCRT3
knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca
2+
signal generation to facilitate chilling tolerance in rice.
Synopsis
Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity.
The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice.
OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress.
Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7.
A cold‐elicited Ca
2+
signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane.
Graphical Abstract
A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021110518</identifier><identifier>PMID: 36341575</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Affinity ; Binding ; Calcineurin ; Calcium ; Calcium ions ; Calcium signal ; Calcium signalling ; Calreticulin ; Calreticulin - metabolism ; Chilling ; Climate change ; Cold ; Cold stress ; Cold Temperature ; Cold tolerance ; Cooling ; Crop production ; EMBO30 ; Endoplasmic reticulum ; Gene Expression Regulation, Plant ; Global climate ; Kinases ; Life Sciences ; Low temperature ; Membranes ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; OsCIPK7 ; OsCRT3 ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein kinase ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Proteins ; Rice ; Signal generation ; Temperature</subject><ispartof>The EMBO journal, 2023-01, Vol.42 (1), p.e110518-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</citedby><cites>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</cites><orcidid>0000-0002-7717-8902 ; 0000-0002-8238-767X ; 0000-0002-1592-2732 ; 0000-0003-4364-778X ; 0000-0003-1687-9833 ; 0000-0002-5118-5514 ; 0000-0001-9801-2568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36341575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Zhongliang</creatorcontrib><creatorcontrib>Xu, Shujuan</creatorcontrib><creatorcontrib>Batistič, Oliver</creatorcontrib><creatorcontrib>Steinhorst, Leonie</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Ren, Dongtao</creatorcontrib><creatorcontrib>Kudla, Jörg</creatorcontrib><creatorcontrib>Xu, Yunyuan</creatorcontrib><creatorcontrib>Chong, Kang</creatorcontrib><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that
Oryza sativa
Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of
OsCRT3
knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca
2+
signal generation to facilitate chilling tolerance in rice.
Synopsis
Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity.
The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice.
OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress.
Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7.
A cold‐elicited Ca
2+
signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane.
Graphical Abstract
A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</description><subject>Affinity</subject><subject>Binding</subject><subject>Calcineurin</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Calcium signal</subject><subject>Calcium signalling</subject><subject>Calreticulin</subject><subject>Calreticulin - metabolism</subject><subject>Chilling</subject><subject>Climate change</subject><subject>Cold</subject><subject>Cold stress</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>Cooling</subject><subject>Crop production</subject><subject>EMBO30</subject><subject>Endoplasmic reticulum</subject><subject>Gene Expression Regulation, Plant</subject><subject>Global climate</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Membranes</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>OsCIPK7</subject><subject>OsCRT3</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein kinase</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Rice</subject><subject>Signal generation</subject><subject>Temperature</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhzglZ4pzW49hxIiEkuipQKCpC5Ww5zmTrVWJv7QTUGz-B38gvwdstLT0gTpbG733zNI-Q58AOQHLJD3Fs1weccQBgEuoHZAGiYgVnSj4kC8YrKATUzR55ktKaMSZrBY_JXlmVAqSSC3K5DEP368dP57vZYketGSJOzs6D8_QsLb-cl9QG34c4mskFbwZqL4xfYaKbGMYw4VZ18vmjom1mOL-ixnd0wnGD0UxzRJrQp-08A6Oz-JQ86s2Q8NnNu0--vj0-X74vTs_enSzfnBZWQlMXsjGMK8SWKcW6trFKdkwKrG0NbddIBnXPq8bKtm2UUKrnAkvBuKgVlwrKcp-83nE3cztiZ9FP0Qx6E91o4pUOxun7P95d6FX4ppsaoOIiA17eAGK4nDFNeh3mmC-QNFcVy3dWDWQV26lsDClF7G83ANPXJeltSfqupGx58XeyW8OfVrLg1U7w3Q149V-gPv509OEeH3b2lJ25qngX_J-ZfgO-H7CP</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Guo, Xiaoyu</creator><creator>Zhang, Dajian</creator><creator>Wang, Zhongliang</creator><creator>Xu, Shujuan</creator><creator>Batistič, Oliver</creator><creator>Steinhorst, Leonie</creator><creator>Li, Hao</creator><creator>Weng, Yuxiang</creator><creator>Ren, Dongtao</creator><creator>Kudla, Jörg</creator><creator>Xu, Yunyuan</creator><creator>Chong, Kang</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7717-8902</orcidid><orcidid>https://orcid.org/0000-0002-8238-767X</orcidid><orcidid>https://orcid.org/0000-0002-1592-2732</orcidid><orcidid>https://orcid.org/0000-0003-4364-778X</orcidid><orcidid>https://orcid.org/0000-0003-1687-9833</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9801-2568</orcidid></search><sort><creationdate>20230104</creationdate><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><author>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Calcineurin</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Calcium signal</topic><topic>Calcium signalling</topic><topic>Calreticulin</topic><topic>Calreticulin - metabolism</topic><topic>Chilling</topic><topic>Climate change</topic><topic>Cold</topic><topic>Cold stress</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>Cooling</topic><topic>Crop production</topic><topic>EMBO30</topic><topic>Endoplasmic reticulum</topic><topic>Gene Expression Regulation, Plant</topic><topic>Global climate</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Membranes</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>OsCIPK7</topic><topic>OsCRT3</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein kinase</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Rice</topic><topic>Signal generation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Zhongliang</creatorcontrib><creatorcontrib>Xu, Shujuan</creatorcontrib><creatorcontrib>Batistič, Oliver</creatorcontrib><creatorcontrib>Steinhorst, Leonie</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Ren, Dongtao</creatorcontrib><creatorcontrib>Kudla, Jörg</creatorcontrib><creatorcontrib>Xu, Yunyuan</creatorcontrib><creatorcontrib>Chong, Kang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoyu</au><au>Zhang, Dajian</au><au>Wang, Zhongliang</au><au>Xu, Shujuan</au><au>Batistič, Oliver</au><au>Steinhorst, Leonie</au><au>Li, Hao</au><au>Weng, Yuxiang</au><au>Ren, Dongtao</au><au>Kudla, Jörg</au><au>Xu, Yunyuan</au><au>Chong, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>e110518</spage><epage>n/a</epage><pages>e110518-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait. Here, we report that
Oryza sativa
Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of
OsCRT3
knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca
2+
signal generation to facilitate chilling tolerance in rice.
Synopsis
Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity.
The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice.
OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress.
Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7.
A cold‐elicited Ca
2+
signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane.
Graphical Abstract
A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36341575</pmid><doi>10.15252/embj.2021110518</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7717-8902</orcidid><orcidid>https://orcid.org/0000-0002-8238-767X</orcidid><orcidid>https://orcid.org/0000-0002-1592-2732</orcidid><orcidid>https://orcid.org/0000-0003-4364-778X</orcidid><orcidid>https://orcid.org/0000-0003-1687-9833</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9801-2568</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2023-01, Vol.42 (1), p.e110518-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811624 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | Affinity Binding Calcineurin Calcium Calcium ions Calcium signal Calcium signalling Calreticulin Calreticulin - metabolism Chilling Climate change Cold Cold stress Cold Temperature Cold tolerance Cooling Crop production EMBO30 Endoplasmic reticulum Gene Expression Regulation, Plant Global climate Kinases Life Sciences Low temperature Membranes Oryza - genetics Oryza - metabolism Oryza sativa OsCIPK7 OsCRT3 Plant Proteins - genetics Plant Proteins - metabolism Protein kinase Protein Kinases - genetics Protein Kinases - metabolism Proteins Rice Signal generation Temperature |
title | Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%E2%80%90induced%20calreticulin%20OsCRT3%20conformational%20changes%20promote%20OsCIPK7%20binding%20and%20temperature%20sensing%20in%20rice&rft.jtitle=The%20EMBO%20journal&rft.au=Guo,%20Xiaoyu&rft.date=2023-01-04&rft.volume=42&rft.issue=1&rft.spage=e110518&rft.epage=n/a&rft.pages=e110518-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021110518&rft_dat=%3Cproquest_pubme%3E2760460791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760460791&rft_id=info:pmid/36341575&rfr_iscdi=true |