Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2023-01, Vol.42 (1), p.e110518-n/a
Hauptverfasser: Guo, Xiaoyu, Zhang, Dajian, Wang, Zhongliang, Xu, Shujuan, Batistič, Oliver, Steinhorst, Leonie, Li, Hao, Weng, Yuxiang, Ren, Dongtao, Kudla, Jörg, Xu, Yunyuan, Chong, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e110518
container_title The EMBO journal
container_volume 42
creator Guo, Xiaoyu
Zhang, Dajian
Wang, Zhongliang
Xu, Shujuan
Batistič, Oliver
Steinhorst, Leonie
Li, Hao
Weng, Yuxiang
Ren, Dongtao
Kudla, Jörg
Xu, Yunyuan
Chong, Kang
description Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca 2+ signal generation to facilitate chilling tolerance in rice. Synopsis Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity. The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice. OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress. Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7. A cold‐elicited Ca 2+ signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane. Graphical Abstract A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.
doi_str_mv 10.15252/embj.2021110518
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760460791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhzglZ4pzW49hxIiEkuipQKCpC5Ww5zmTrVWJv7QTUGz-B38gvwdstLT0gTpbG733zNI-Q58AOQHLJD3Fs1weccQBgEuoHZAGiYgVnSj4kC8YrKATUzR55ktKaMSZrBY_JXlmVAqSSC3K5DEP368dP57vZYketGSJOzs6D8_QsLb-cl9QG34c4mskFbwZqL4xfYaKbGMYw4VZ18vmjom1mOL-ixnd0wnGD0UxzRJrQp-08A6Oz-JQ86s2Q8NnNu0--vj0-X74vTs_enSzfnBZWQlMXsjGMK8SWKcW6trFKdkwKrG0NbddIBnXPq8bKtm2UUKrnAkvBuKgVlwrKcp-83nE3cztiZ9FP0Qx6E91o4pUOxun7P95d6FX4ppsaoOIiA17eAGK4nDFNeh3mmC-QNFcVy3dWDWQV26lsDClF7G83ANPXJeltSfqupGx58XeyW8OfVrLg1U7w3Q149V-gPv509OEeH3b2lJ25qngX_J-ZfgO-H7CP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760460791</pqid></control><display><type>article</type><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</creator><creatorcontrib>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</creatorcontrib><description>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca 2+ signal generation to facilitate chilling tolerance in rice. Synopsis Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity. The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice. OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress. Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7. A cold‐elicited Ca 2+ signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane. Graphical Abstract A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021110518</identifier><identifier>PMID: 36341575</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Affinity ; Binding ; Calcineurin ; Calcium ; Calcium ions ; Calcium signal ; Calcium signalling ; Calreticulin ; Calreticulin - metabolism ; Chilling ; Climate change ; Cold ; Cold stress ; Cold Temperature ; Cold tolerance ; Cooling ; Crop production ; EMBO30 ; Endoplasmic reticulum ; Gene Expression Regulation, Plant ; Global climate ; Kinases ; Life Sciences ; Low temperature ; Membranes ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; OsCIPK7 ; OsCRT3 ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein kinase ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Proteins ; Rice ; Signal generation ; Temperature</subject><ispartof>The EMBO journal, 2023-01, Vol.42 (1), p.e110518-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</citedby><cites>FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</cites><orcidid>0000-0002-7717-8902 ; 0000-0002-8238-767X ; 0000-0002-1592-2732 ; 0000-0003-4364-778X ; 0000-0003-1687-9833 ; 0000-0002-5118-5514 ; 0000-0001-9801-2568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36341575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Zhongliang</creatorcontrib><creatorcontrib>Xu, Shujuan</creatorcontrib><creatorcontrib>Batistič, Oliver</creatorcontrib><creatorcontrib>Steinhorst, Leonie</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Ren, Dongtao</creatorcontrib><creatorcontrib>Kudla, Jörg</creatorcontrib><creatorcontrib>Xu, Yunyuan</creatorcontrib><creatorcontrib>Chong, Kang</creatorcontrib><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca 2+ signal generation to facilitate chilling tolerance in rice. Synopsis Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity. The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice. OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress. Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7. A cold‐elicited Ca 2+ signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane. Graphical Abstract A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</description><subject>Affinity</subject><subject>Binding</subject><subject>Calcineurin</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Calcium signal</subject><subject>Calcium signalling</subject><subject>Calreticulin</subject><subject>Calreticulin - metabolism</subject><subject>Chilling</subject><subject>Climate change</subject><subject>Cold</subject><subject>Cold stress</subject><subject>Cold Temperature</subject><subject>Cold tolerance</subject><subject>Cooling</subject><subject>Crop production</subject><subject>EMBO30</subject><subject>Endoplasmic reticulum</subject><subject>Gene Expression Regulation, Plant</subject><subject>Global climate</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Low temperature</subject><subject>Membranes</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>OsCIPK7</subject><subject>OsCRT3</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein kinase</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Rice</subject><subject>Signal generation</subject><subject>Temperature</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhzglZ4pzW49hxIiEkuipQKCpC5Ww5zmTrVWJv7QTUGz-B38gvwdstLT0gTpbG733zNI-Q58AOQHLJD3Fs1weccQBgEuoHZAGiYgVnSj4kC8YrKATUzR55ktKaMSZrBY_JXlmVAqSSC3K5DEP368dP57vZYketGSJOzs6D8_QsLb-cl9QG34c4mskFbwZqL4xfYaKbGMYw4VZ18vmjom1mOL-ixnd0wnGD0UxzRJrQp-08A6Oz-JQ86s2Q8NnNu0--vj0-X74vTs_enSzfnBZWQlMXsjGMK8SWKcW6trFKdkwKrG0NbddIBnXPq8bKtm2UUKrnAkvBuKgVlwrKcp-83nE3cztiZ9FP0Qx6E91o4pUOxun7P95d6FX4ppsaoOIiA17eAGK4nDFNeh3mmC-QNFcVy3dWDWQV26lsDClF7G83ANPXJeltSfqupGx58XeyW8OfVrLg1U7w3Q149V-gPv509OEeH3b2lJ25qngX_J-ZfgO-H7CP</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Guo, Xiaoyu</creator><creator>Zhang, Dajian</creator><creator>Wang, Zhongliang</creator><creator>Xu, Shujuan</creator><creator>Batistič, Oliver</creator><creator>Steinhorst, Leonie</creator><creator>Li, Hao</creator><creator>Weng, Yuxiang</creator><creator>Ren, Dongtao</creator><creator>Kudla, Jörg</creator><creator>Xu, Yunyuan</creator><creator>Chong, Kang</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7717-8902</orcidid><orcidid>https://orcid.org/0000-0002-8238-767X</orcidid><orcidid>https://orcid.org/0000-0002-1592-2732</orcidid><orcidid>https://orcid.org/0000-0003-4364-778X</orcidid><orcidid>https://orcid.org/0000-0003-1687-9833</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9801-2568</orcidid></search><sort><creationdate>20230104</creationdate><title>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</title><author>Guo, Xiaoyu ; Zhang, Dajian ; Wang, Zhongliang ; Xu, Shujuan ; Batistič, Oliver ; Steinhorst, Leonie ; Li, Hao ; Weng, Yuxiang ; Ren, Dongtao ; Kudla, Jörg ; Xu, Yunyuan ; Chong, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5198-59a027eeb0770db9c75d054e8c81bd95018f269c5bb97477f24e3402487257133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Calcineurin</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Calcium signal</topic><topic>Calcium signalling</topic><topic>Calreticulin</topic><topic>Calreticulin - metabolism</topic><topic>Chilling</topic><topic>Climate change</topic><topic>Cold</topic><topic>Cold stress</topic><topic>Cold Temperature</topic><topic>Cold tolerance</topic><topic>Cooling</topic><topic>Crop production</topic><topic>EMBO30</topic><topic>Endoplasmic reticulum</topic><topic>Gene Expression Regulation, Plant</topic><topic>Global climate</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Low temperature</topic><topic>Membranes</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>OsCIPK7</topic><topic>OsCRT3</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein kinase</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Rice</topic><topic>Signal generation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Wang, Zhongliang</creatorcontrib><creatorcontrib>Xu, Shujuan</creatorcontrib><creatorcontrib>Batistič, Oliver</creatorcontrib><creatorcontrib>Steinhorst, Leonie</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Ren, Dongtao</creatorcontrib><creatorcontrib>Kudla, Jörg</creatorcontrib><creatorcontrib>Xu, Yunyuan</creatorcontrib><creatorcontrib>Chong, Kang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaoyu</au><au>Zhang, Dajian</au><au>Wang, Zhongliang</au><au>Xu, Shujuan</au><au>Batistič, Oliver</au><au>Steinhorst, Leonie</au><au>Li, Hao</au><au>Weng, Yuxiang</au><au>Ren, Dongtao</au><au>Kudla, Jörg</au><au>Xu, Yunyuan</au><au>Chong, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>e110518</spage><epage>n/a</epage><pages>e110518-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL‐interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock‐out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B‐like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold‐sensing mechanism that simultaneously conveys cold‐induced protein conformational change, enhances kinase activity, and Ca 2+ signal generation to facilitate chilling tolerance in rice. Synopsis Cold sensors convert physical signals into protective responses. Here, an OsCRT3‐OsCIPK7 protein‐protein interaction senses cold through conformational changes which enhance their binding affinity. The plant‐specific calreticulin OsCRT3 is a positive regulator of chilling tolerance in rice. OsCRT3, as an ER‐localized protein, regulates changes in cytosolic calcium concentration to protect against cold stress. Conformational changes to OsCRT3 triggered by cold stress enhance its ability to bind to and stimulate kinase activity of OsCIPK7. A cold‐elicited Ca 2+ signal is sensed by the calcium sensor OsCBL7/8, which specifically interacts with OsCIPK7 on the plasma membrane. Graphical Abstract A plant‐specific calreticulin regulates cytosolic calcium levels and OsCIPK7 kinase activity to protect against cold stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36341575</pmid><doi>10.15252/embj.2021110518</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7717-8902</orcidid><orcidid>https://orcid.org/0000-0002-8238-767X</orcidid><orcidid>https://orcid.org/0000-0002-1592-2732</orcidid><orcidid>https://orcid.org/0000-0003-4364-778X</orcidid><orcidid>https://orcid.org/0000-0003-1687-9833</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9801-2568</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2023-01, Vol.42 (1), p.e110518-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9811624
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Affinity
Binding
Calcineurin
Calcium
Calcium ions
Calcium signal
Calcium signalling
Calreticulin
Calreticulin - metabolism
Chilling
Climate change
Cold
Cold stress
Cold Temperature
Cold tolerance
Cooling
Crop production
EMBO30
Endoplasmic reticulum
Gene Expression Regulation, Plant
Global climate
Kinases
Life Sciences
Low temperature
Membranes
Oryza - genetics
Oryza - metabolism
Oryza sativa
OsCIPK7
OsCRT3
Plant Proteins - genetics
Plant Proteins - metabolism
Protein kinase
Protein Kinases - genetics
Protein Kinases - metabolism
Proteins
Rice
Signal generation
Temperature
title Cold‐induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%E2%80%90induced%20calreticulin%20OsCRT3%20conformational%20changes%20promote%20OsCIPK7%20binding%20and%20temperature%20sensing%20in%20rice&rft.jtitle=The%20EMBO%20journal&rft.au=Guo,%20Xiaoyu&rft.date=2023-01-04&rft.volume=42&rft.issue=1&rft.spage=e110518&rft.epage=n/a&rft.pages=e110518-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021110518&rft_dat=%3Cproquest_pubme%3E2760460791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760460791&rft_id=info:pmid/36341575&rfr_iscdi=true