Deep learning-based apical lesion segmentation from panoramic radiographs
Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to...
Gespeichert in:
Veröffentlicht in: | Imaging science in dentistry 2022-12, Vol.52 (4), p.351-357 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 4 |
container_start_page | 351 |
container_title | Imaging science in dentistry |
container_volume | 52 |
creator | Song, Il-Seok Shin, Hak-Kyun Kang, Ju-Hee Kim, Jo-Eun Huh, Kyung-Hoe Yi, Won-Jin Lee, Sam-Sun Heo, Min-Suk |
description | Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs.
A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score.
In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5.
This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions. |
doi_str_mv | 10.5624/isd.20220078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9807797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761987206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-ad82151ca245d2cb0347e442ef904e53714f83c3b8fa4a6f815da06d217657f43</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQXUSxpfbmWXL0YOpmv3MRpH4VCl70vEw2m3QlycbdVPDfm9JadC7z9XjzmIfQZYYXXBB262K5IJgQjKU6QVNCKE2lovj0WBMyQfMYP_AYnCgpsnM0oUJgrgSdotWDtX3SWAid6-q0gGjLBHpnoBmn0fkuibZubTfAsGuq4Nukh84HaJ1JApTO1wH6TbxAZxU00c4PeYbenx7fli_p-vV5tbxfp4ZxPKRQKpLxzABhvCSmwJRJyxixVY6Z5VRmrFLU0EJVwEBUKuMlYFGSTAouK0Zn6G7P22-L1pZmlBag0X1wLYRv7cHp_5vObXTtv3SusJS5HAmuDwTBf25tHHTrorFNA53126jJ-KNcSYLFCL3ZQ03wMQZbHc9kWO8M0KMB-teAEX71V9oR_Ptu-gOSrIIh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761987206</pqid></control><display><type>article</type><title>Deep learning-based apical lesion segmentation from panoramic radiographs</title><source>KoreaMed Synapse</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>KoreaMed Open Access</source><source>PubMed Central</source><creator>Song, Il-Seok ; Shin, Hak-Kyun ; Kang, Ju-Hee ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Yi, Won-Jin ; Lee, Sam-Sun ; Heo, Min-Suk</creator><creatorcontrib>Song, Il-Seok ; Shin, Hak-Kyun ; Kang, Ju-Hee ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Yi, Won-Jin ; Lee, Sam-Sun ; Heo, Min-Suk</creatorcontrib><description>Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs.
A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score.
In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5.
This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.</description><identifier>ISSN: 2233-7822</identifier><identifier>EISSN: 2233-7830</identifier><identifier>DOI: 10.5624/isd.20220078</identifier><identifier>PMID: 36605863</identifier><language>eng</language><publisher>Korea (South): Korean Academy of Oral and Maxillofacial Radiology</publisher><subject>Original</subject><ispartof>Imaging science in dentistry, 2022-12, Vol.52 (4), p.351-357</ispartof><rights>Copyright © 2022 by Korean Academy of Oral and Maxillofacial Radiology.</rights><rights>Copyright © 2022 by Korean Academy of Oral and Maxillofacial Radiology 2022 Korean Academy of Oral and Maxillofacial Radiology</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-ad82151ca245d2cb0347e442ef904e53714f83c3b8fa4a6f815da06d217657f43</citedby><cites>FETCH-LOGICAL-c450t-ad82151ca245d2cb0347e442ef904e53714f83c3b8fa4a6f815da06d217657f43</cites><orcidid>0000-0003-3344-4807 ; 0000-0003-3406-0645 ; 0000-0002-7973-0262 ; 0000-0002-5977-6634 ; 0000-0002-4407-5982 ; 0000-0003-0218-5304 ; 0000-0002-8771-0392 ; 0000-0001-7223-9262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36605863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Il-Seok</creatorcontrib><creatorcontrib>Shin, Hak-Kyun</creatorcontrib><creatorcontrib>Kang, Ju-Hee</creatorcontrib><creatorcontrib>Kim, Jo-Eun</creatorcontrib><creatorcontrib>Huh, Kyung-Hoe</creatorcontrib><creatorcontrib>Yi, Won-Jin</creatorcontrib><creatorcontrib>Lee, Sam-Sun</creatorcontrib><creatorcontrib>Heo, Min-Suk</creatorcontrib><title>Deep learning-based apical lesion segmentation from panoramic radiographs</title><title>Imaging science in dentistry</title><addtitle>Imaging Sci Dent</addtitle><description>Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs.
A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score.
In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5.
This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.</description><subject>Original</subject><issn>2233-7822</issn><issn>2233-7830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1Lw0AQXUSxpfbmWXL0YOpmv3MRpH4VCl70vEw2m3QlycbdVPDfm9JadC7z9XjzmIfQZYYXXBB262K5IJgQjKU6QVNCKE2lovj0WBMyQfMYP_AYnCgpsnM0oUJgrgSdotWDtX3SWAid6-q0gGjLBHpnoBmn0fkuibZubTfAsGuq4Nukh84HaJ1JApTO1wH6TbxAZxU00c4PeYbenx7fli_p-vV5tbxfp4ZxPKRQKpLxzABhvCSmwJRJyxixVY6Z5VRmrFLU0EJVwEBUKuMlYFGSTAouK0Zn6G7P22-L1pZmlBag0X1wLYRv7cHp_5vObXTtv3SusJS5HAmuDwTBf25tHHTrorFNA53126jJ-KNcSYLFCL3ZQ03wMQZbHc9kWO8M0KMB-teAEX71V9oR_Ptu-gOSrIIh</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Song, Il-Seok</creator><creator>Shin, Hak-Kyun</creator><creator>Kang, Ju-Hee</creator><creator>Kim, Jo-Eun</creator><creator>Huh, Kyung-Hoe</creator><creator>Yi, Won-Jin</creator><creator>Lee, Sam-Sun</creator><creator>Heo, Min-Suk</creator><general>Korean Academy of Oral and Maxillofacial Radiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3344-4807</orcidid><orcidid>https://orcid.org/0000-0003-3406-0645</orcidid><orcidid>https://orcid.org/0000-0002-7973-0262</orcidid><orcidid>https://orcid.org/0000-0002-5977-6634</orcidid><orcidid>https://orcid.org/0000-0002-4407-5982</orcidid><orcidid>https://orcid.org/0000-0003-0218-5304</orcidid><orcidid>https://orcid.org/0000-0002-8771-0392</orcidid><orcidid>https://orcid.org/0000-0001-7223-9262</orcidid></search><sort><creationdate>20221201</creationdate><title>Deep learning-based apical lesion segmentation from panoramic radiographs</title><author>Song, Il-Seok ; Shin, Hak-Kyun ; Kang, Ju-Hee ; Kim, Jo-Eun ; Huh, Kyung-Hoe ; Yi, Won-Jin ; Lee, Sam-Sun ; Heo, Min-Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-ad82151ca245d2cb0347e442ef904e53714f83c3b8fa4a6f815da06d217657f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Il-Seok</creatorcontrib><creatorcontrib>Shin, Hak-Kyun</creatorcontrib><creatorcontrib>Kang, Ju-Hee</creatorcontrib><creatorcontrib>Kim, Jo-Eun</creatorcontrib><creatorcontrib>Huh, Kyung-Hoe</creatorcontrib><creatorcontrib>Yi, Won-Jin</creatorcontrib><creatorcontrib>Lee, Sam-Sun</creatorcontrib><creatorcontrib>Heo, Min-Suk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Imaging science in dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Il-Seok</au><au>Shin, Hak-Kyun</au><au>Kang, Ju-Hee</au><au>Kim, Jo-Eun</au><au>Huh, Kyung-Hoe</au><au>Yi, Won-Jin</au><au>Lee, Sam-Sun</au><au>Heo, Min-Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based apical lesion segmentation from panoramic radiographs</atitle><jtitle>Imaging science in dentistry</jtitle><addtitle>Imaging Sci Dent</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>351</spage><epage>357</epage><pages>351-357</pages><issn>2233-7822</issn><eissn>2233-7830</eissn><abstract>Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs.
A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score.
In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5.
This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.</abstract><cop>Korea (South)</cop><pub>Korean Academy of Oral and Maxillofacial Radiology</pub><pmid>36605863</pmid><doi>10.5624/isd.20220078</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3344-4807</orcidid><orcidid>https://orcid.org/0000-0003-3406-0645</orcidid><orcidid>https://orcid.org/0000-0002-7973-0262</orcidid><orcidid>https://orcid.org/0000-0002-5977-6634</orcidid><orcidid>https://orcid.org/0000-0002-4407-5982</orcidid><orcidid>https://orcid.org/0000-0003-0218-5304</orcidid><orcidid>https://orcid.org/0000-0002-8771-0392</orcidid><orcidid>https://orcid.org/0000-0001-7223-9262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2233-7822 |
ispartof | Imaging science in dentistry, 2022-12, Vol.52 (4), p.351-357 |
issn | 2233-7822 2233-7830 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9807797 |
source | KoreaMed Synapse; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; KoreaMed Open Access; PubMed Central |
subjects | Original |
title | Deep learning-based apical lesion segmentation from panoramic radiographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20apical%20lesion%20segmentation%20from%20panoramic%20radiographs&rft.jtitle=Imaging%20science%20in%20dentistry&rft.au=Song,%20Il-Seok&rft.date=2022-12-01&rft.volume=52&rft.issue=4&rft.spage=351&rft.epage=357&rft.pages=351-357&rft.issn=2233-7822&rft.eissn=2233-7830&rft_id=info:doi/10.5624/isd.20220078&rft_dat=%3Cproquest_pubme%3E2761987206%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761987206&rft_id=info:pmid/36605863&rfr_iscdi=true |