Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model

Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2023-01, Vol.114 (1), p.227-235
Hauptverfasser: Sora, Shota, Sukhbaatar, Ariunbuyan, Fukushige, Shinichi, Mori, Shiro, Sakamoto, Maya, Kodama, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 1
container_start_page 227
container_title Cancer science
container_volume 114
creator Sora, Shota
Sukhbaatar, Ariunbuyan
Fukushige, Shinichi
Mori, Shiro
Sakamoto, Maya
Kodama, Tetsuya
description Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high‐frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT‐PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL‐12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients. Lymphatic drug delivery system (LDDS) targeting early stage lymph node  (LN) metastasis. Middle ‐dose (1.0 Gy) total body irradiation (M‐TBI) was combined with LDDS. Antitumor effects were evaluated using in vivo bioluminescence imaging, high‐frequency ultrasound, histology, and quantitative RT‐PCR. Combination therapy with M‐TBI and LDDS is a promising novel approach to enhance the treatment of micrometastases in early metastatic LNs and distant organs.
doi_str_mv 10.1111/cas.15562
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9807513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A740939422</galeid><sourcerecordid>A740939422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5612-26e4ed0e0659640a74f919eb4dfe042d8abbda0f120b56dd5445cb714c57728e3</originalsourceid><addsrcrecordid>eNp1kUtv3CAURq2qVfNoF_0DFVI3zcLJBWMYNpVGo76kSF20XSNsrmeIbJiCncj_vsRO04dUFoDg3ANXX1G8onBJ87hqTbqkdS3Yk-KUVlyVEkA8XfayVFCxk-IspRuASnDFnxcnlYBaKMZPi3kXhsZ5M7rgyXjAaI4zCR3p5-F4yKctsXHaE4u9u8U4E-MtGcNoetIEOxMXo7FurXaeGDLgaNK4FC4K4oPFpaqf_J4MYUqY5-x7UTzrTJ_w5cN6Xnz_8P7b7lN5_eXj5932umxrQVnJBHK0gCBqJTgYyTtFFTbcdgic2Y1pGmugowyaWlhbc163jaS8raVkG6zOi3er9zg1A9oW_RhNr4_RDSbOOhin_77x7qD34VarDciaVlnw9kEQw48J06gHl1rse-Mxt6OZBCWrjQKa0Tf_oDdhij63lykBwEAy9pvamx61813I77b3Ur2VHFSl-EJdrFQbQ0oRu8cvU9D3sescu15iz-zrP3t8JH_lnIGrFbhzPc7_N-nd9uuq_Ann4rfX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760020722</pqid></control><display><type>article</type><title>Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Sora, Shota ; Sukhbaatar, Ariunbuyan ; Fukushige, Shinichi ; Mori, Shiro ; Sakamoto, Maya ; Kodama, Tetsuya</creator><creatorcontrib>Sora, Shota ; Sukhbaatar, Ariunbuyan ; Fukushige, Shinichi ; Mori, Shiro ; Sakamoto, Maya ; Kodama, Tetsuya</creatorcontrib><description>Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high‐frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT‐PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL‐12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients. Lymphatic drug delivery system (LDDS) targeting early stage lymph node  (LN) metastasis. Middle ‐dose (1.0 Gy) total body irradiation (M‐TBI) was combined with LDDS. Antitumor effects were evaluated using in vivo bioluminescence imaging, high‐frequency ultrasound, histology, and quantitative RT‐PCR. Combination therapy with M‐TBI and LDDS is a promising novel approach to enhance the treatment of micrometastases in early metastatic LNs and distant organs.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.15562</identifier><identifier>PMID: 36056924</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Antitumor activity ; Bioluminescence ; Cancer ; CD4 antigen ; CD8 antigen ; Chemotherapy ; cisplatin ; Drug delivery ; Drug Delivery Systems ; Drug dosages ; Drugs ; Experiments ; Health aspects ; Immune response ; Inoculation ; Lung ; Lung Neoplasms - drug therapy ; Lung Neoplasms - radiotherapy ; lymph node metastasis ; Lymph nodes ; Lymph Nodes - pathology ; lymphatic drug delivery system ; Lymphatic system ; Metastases ; Metastasis ; Mice ; Original ; ORIGINAL ARTICLES ; Radiation ; Radiation therapy ; radiotherapy ; Retention ; Tumor cells ; Tumor Microenvironment ; Tumor necrosis factor-TNF ; Vehicles ; Viscosity ; Whole-Body Irradiation</subject><ispartof>Cancer science, 2023-01, Vol.114 (1), p.227-235</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2022 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5612-26e4ed0e0659640a74f919eb4dfe042d8abbda0f120b56dd5445cb714c57728e3</citedby><cites>FETCH-LOGICAL-c5612-26e4ed0e0659640a74f919eb4dfe042d8abbda0f120b56dd5445cb714c57728e3</cites><orcidid>0000-0003-4727-9558 ; 0000-0003-0588-6376 ; 0000-0001-9137-2966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807513/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807513/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36056924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sora, Shota</creatorcontrib><creatorcontrib>Sukhbaatar, Ariunbuyan</creatorcontrib><creatorcontrib>Fukushige, Shinichi</creatorcontrib><creatorcontrib>Mori, Shiro</creatorcontrib><creatorcontrib>Sakamoto, Maya</creatorcontrib><creatorcontrib>Kodama, Tetsuya</creatorcontrib><title>Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high‐frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT‐PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL‐12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients. Lymphatic drug delivery system (LDDS) targeting early stage lymph node  (LN) metastasis. Middle ‐dose (1.0 Gy) total body irradiation (M‐TBI) was combined with LDDS. Antitumor effects were evaluated using in vivo bioluminescence imaging, high‐frequency ultrasound, histology, and quantitative RT‐PCR. Combination therapy with M‐TBI and LDDS is a promising novel approach to enhance the treatment of micrometastases in early metastatic LNs and distant organs.</description><subject>Animals</subject><subject>Antitumor activity</subject><subject>Bioluminescence</subject><subject>Cancer</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Chemotherapy</subject><subject>cisplatin</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug dosages</subject><subject>Drugs</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Immune response</subject><subject>Inoculation</subject><subject>Lung</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - radiotherapy</subject><subject>lymph node metastasis</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - pathology</subject><subject>lymphatic drug delivery system</subject><subject>Lymphatic system</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Original</subject><subject>ORIGINAL ARTICLES</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>Retention</subject><subject>Tumor cells</subject><subject>Tumor Microenvironment</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vehicles</subject><subject>Viscosity</subject><subject>Whole-Body Irradiation</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtv3CAURq2qVfNoF_0DFVI3zcLJBWMYNpVGo76kSF20XSNsrmeIbJiCncj_vsRO04dUFoDg3ANXX1G8onBJ87hqTbqkdS3Yk-KUVlyVEkA8XfayVFCxk-IspRuASnDFnxcnlYBaKMZPi3kXhsZ5M7rgyXjAaI4zCR3p5-F4yKctsXHaE4u9u8U4E-MtGcNoetIEOxMXo7FurXaeGDLgaNK4FC4K4oPFpaqf_J4MYUqY5-x7UTzrTJ_w5cN6Xnz_8P7b7lN5_eXj5932umxrQVnJBHK0gCBqJTgYyTtFFTbcdgic2Y1pGmugowyaWlhbc163jaS8raVkG6zOi3er9zg1A9oW_RhNr4_RDSbOOhin_77x7qD34VarDciaVlnw9kEQw48J06gHl1rse-Mxt6OZBCWrjQKa0Tf_oDdhij63lykBwEAy9pvamx61813I77b3Ur2VHFSl-EJdrFQbQ0oRu8cvU9D3sescu15iz-zrP3t8JH_lnIGrFbhzPc7_N-nd9uuq_Ann4rfX</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Sora, Shota</creator><creator>Sukhbaatar, Ariunbuyan</creator><creator>Fukushige, Shinichi</creator><creator>Mori, Shiro</creator><creator>Sakamoto, Maya</creator><creator>Kodama, Tetsuya</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4727-9558</orcidid><orcidid>https://orcid.org/0000-0003-0588-6376</orcidid><orcidid>https://orcid.org/0000-0001-9137-2966</orcidid></search><sort><creationdate>202301</creationdate><title>Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model</title><author>Sora, Shota ; Sukhbaatar, Ariunbuyan ; Fukushige, Shinichi ; Mori, Shiro ; Sakamoto, Maya ; Kodama, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5612-26e4ed0e0659640a74f919eb4dfe042d8abbda0f120b56dd5445cb714c57728e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Antitumor activity</topic><topic>Bioluminescence</topic><topic>Cancer</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Chemotherapy</topic><topic>cisplatin</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug dosages</topic><topic>Drugs</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Immune response</topic><topic>Inoculation</topic><topic>Lung</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - radiotherapy</topic><topic>lymph node metastasis</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - pathology</topic><topic>lymphatic drug delivery system</topic><topic>Lymphatic system</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Original</topic><topic>ORIGINAL ARTICLES</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>Retention</topic><topic>Tumor cells</topic><topic>Tumor Microenvironment</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vehicles</topic><topic>Viscosity</topic><topic>Whole-Body Irradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sora, Shota</creatorcontrib><creatorcontrib>Sukhbaatar, Ariunbuyan</creatorcontrib><creatorcontrib>Fukushige, Shinichi</creatorcontrib><creatorcontrib>Mori, Shiro</creatorcontrib><creatorcontrib>Sakamoto, Maya</creatorcontrib><creatorcontrib>Kodama, Tetsuya</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sora, Shota</au><au>Sukhbaatar, Ariunbuyan</au><au>Fukushige, Shinichi</au><au>Mori, Shiro</au><au>Sakamoto, Maya</au><au>Kodama, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2023-01</date><risdate>2023</risdate><volume>114</volume><issue>1</issue><spage>227</spage><epage>235</epage><pages>227-235</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Chemotherapy using a lymphatic drug delivery system (LDDS) targeting lymph nodes (LNs) in the early stage of metastasis has a superior antitumor effect to systemic chemotherapy. An LDDS produces a higher drug retention rate and tissue selectivity in LNs. To expand the therapeutic coverage of LDDS from local treatment of metastatic LNs to prevention of distant metastases, the combination of treatment with therapies that enhance systemic tumor immune effects is an important therapeutic strategy. Recently, total body irradiation (TBI) has been shown to activate immune responses and alter the tumor microenvironment. Here we show that combination therapy with TBI and LDDS improves the antitumor effect of metastatic LNs and lung metastasis. Tumor cells were inoculated into the subiliac LN (SiLN) to induce metastasis into the proper axillary LN (PALN) and lung in a mouse model. TBI was carried out on day 4 after inoculation using a gamma irradiator. Lymphatic drug delivery into the accessory axillary LN was used to treat PALN. In vivo bioluminescence imaging, high‐frequency ultrasound, and histology showed that combination therapy using TBI (total dose 1.0 Gy once) and the LDDS suppressed tumor growth in LNs and lung metastases and was more effective than using LDDS or TBI alone. Quantitative RT‐PCR of spleens after combination therapy revealed increased expression of CD4, CD8, and IL‐12b, indicating an activated immune response. The results show that combination therapy with TBI and LDDS is a method to improve the efficacy of LN metastases and distant metastases therapy and is a promising novel approach to treat cancer patients. Lymphatic drug delivery system (LDDS) targeting early stage lymph node  (LN) metastasis. Middle ‐dose (1.0 Gy) total body irradiation (M‐TBI) was combined with LDDS. Antitumor effects were evaluated using in vivo bioluminescence imaging, high‐frequency ultrasound, histology, and quantitative RT‐PCR. Combination therapy with M‐TBI and LDDS is a promising novel approach to enhance the treatment of micrometastases in early metastatic LNs and distant organs.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36056924</pmid><doi>10.1111/cas.15562</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4727-9558</orcidid><orcidid>https://orcid.org/0000-0003-0588-6376</orcidid><orcidid>https://orcid.org/0000-0001-9137-2966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2023-01, Vol.114 (1), p.227-235
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9807513
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animals
Antitumor activity
Bioluminescence
Cancer
CD4 antigen
CD8 antigen
Chemotherapy
cisplatin
Drug delivery
Drug Delivery Systems
Drug dosages
Drugs
Experiments
Health aspects
Immune response
Inoculation
Lung
Lung Neoplasms - drug therapy
Lung Neoplasms - radiotherapy
lymph node metastasis
Lymph nodes
Lymph Nodes - pathology
lymphatic drug delivery system
Lymphatic system
Metastases
Metastasis
Mice
Original
ORIGINAL ARTICLES
Radiation
Radiation therapy
radiotherapy
Retention
Tumor cells
Tumor Microenvironment
Tumor necrosis factor-TNF
Vehicles
Viscosity
Whole-Body Irradiation
title Combination therapy of lymphatic drug delivery and total body irradiation in a metastatic lymph node and lung mouse model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20therapy%20of%20lymphatic%20drug%20delivery%20and%20total%20body%20irradiation%20in%20a%20metastatic%20lymph%20node%20and%20lung%20mouse%20model&rft.jtitle=Cancer%20science&rft.au=Sora,%20Shota&rft.date=2023-01&rft.volume=114&rft.issue=1&rft.spage=227&rft.epage=235&rft.pages=227-235&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.15562&rft_dat=%3Cgale_pubme%3EA740939422%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760020722&rft_id=info:pmid/36056924&rft_galeid=A740939422&rfr_iscdi=true