Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification

Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational and psychological measurement 2023-02, Vol.83 (1), p.73-92
Hauptverfasser: Fisk, Charles L., Harring, Jeffrey R., Shen, Zuchao, Leite, Walter, Suen, King Yiu, Marcoulides, Katerina M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 73
container_title Educational and psychological measurement
container_volume 83
creator Fisk, Charles L.
Harring, Jeffrey R.
Shen, Zuchao
Leite, Walter
Suen, King Yiu
Marcoulides, Katerina M.
description Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.
doi_str_mv 10.1177/00131644211073121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9806519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1360541</ericid><sage_id>10.1177_00131644211073121</sage_id><sourcerecordid>2761180670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi1ERYfCA7AARWLDJq2Pb0k2SFU1QFErFkO3WI5zMrjK2EPsjOjbE2vKAEX1wpb8f-c_N0JeAT0FqKozSoGDEoIB0IoDgydkAVKyktd1_ZQssl5m4Jg8j_GWzkcAPCPHXCkKTIoF-XYTnV8XK7eZBpOwK869RzPkvxSKS7_DmNx6VooV-uiS27l0V4S-WC2vM7H8mXD0ZiiuQ4fz7WLconW9sya54F-Qo94MEV_evyfk5sPy68Wn8urLx8uL86vSCiFTqfqqEW0PsqPW9D0TtWmQN600HGslWqs6VVW86ZSpWwWGtpRRpC2HzvCGU35C3u99t1O7wc6iT6MZ9HZ0GzPe6WCc_lfx7rteh51uaqokNLPBu3uDMfyY5qb1xkWLw2A8hilqVimAma1yrrcP0Nsw5RlkSjaMzZPNFOwpO4YYR-wPxQDVeXv6v-3NMW_-7uIQ8XtdM_B6D-Do7EFefgauqBTZ4HSvR7PGP2U9nvEXg8irqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759221250</pqid></control><display><type>article</type><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><source>SAGE Complete A-Z List</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</creator><creatorcontrib>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</creatorcontrib><description>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/00131644211073121</identifier><identifier>PMID: 36601254</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Evaluation Methods ; Simulation ; Structural equation modeling ; Structural Equation Models</subject><ispartof>Educational and psychological measurement, 2023-02, Vol.83 (1), p.73-92</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</citedby><cites>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</cites><orcidid>0000-0002-7102-0303 ; 0000-0001-8829-870X ; 0000-0001-7655-5668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806519/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806519/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,21800,27905,27906,43602,43603,53772,53774</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360541$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36601254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisk, Charles L.</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Shen, Zuchao</creatorcontrib><creatorcontrib>Leite, Walter</creatorcontrib><creatorcontrib>Suen, King Yiu</creatorcontrib><creatorcontrib>Marcoulides, Katerina M.</creatorcontrib><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><title>Educational and psychological measurement</title><addtitle>Educ Psychol Meas</addtitle><description>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</description><subject>Algorithms</subject><subject>Evaluation Methods</subject><subject>Simulation</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi1ERYfCA7AARWLDJq2Pb0k2SFU1QFErFkO3WI5zMrjK2EPsjOjbE2vKAEX1wpb8f-c_N0JeAT0FqKozSoGDEoIB0IoDgydkAVKyktd1_ZQssl5m4Jg8j_GWzkcAPCPHXCkKTIoF-XYTnV8XK7eZBpOwK869RzPkvxSKS7_DmNx6VooV-uiS27l0V4S-WC2vM7H8mXD0ZiiuQ4fz7WLconW9sya54F-Qo94MEV_evyfk5sPy68Wn8urLx8uL86vSCiFTqfqqEW0PsqPW9D0TtWmQN600HGslWqs6VVW86ZSpWwWGtpRRpC2HzvCGU35C3u99t1O7wc6iT6MZ9HZ0GzPe6WCc_lfx7rteh51uaqokNLPBu3uDMfyY5qb1xkWLw2A8hilqVimAma1yrrcP0Nsw5RlkSjaMzZPNFOwpO4YYR-wPxQDVeXv6v-3NMW_-7uIQ8XtdM_B6D-Do7EFefgauqBTZ4HSvR7PGP2U9nvEXg8irqA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fisk, Charles L.</creator><creator>Harring, Jeffrey R.</creator><creator>Shen, Zuchao</creator><creator>Leite, Walter</creator><creator>Suen, King Yiu</creator><creator>Marcoulides, Katerina M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7102-0303</orcidid><orcidid>https://orcid.org/0000-0001-8829-870X</orcidid><orcidid>https://orcid.org/0000-0001-7655-5668</orcidid></search><sort><creationdate>20230201</creationdate><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><author>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Evaluation Methods</topic><topic>Simulation</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisk, Charles L.</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Shen, Zuchao</creatorcontrib><creatorcontrib>Leite, Walter</creatorcontrib><creatorcontrib>Suen, King Yiu</creatorcontrib><creatorcontrib>Marcoulides, Katerina M.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisk, Charles L.</au><au>Harring, Jeffrey R.</au><au>Shen, Zuchao</au><au>Leite, Walter</au><au>Suen, King Yiu</au><au>Marcoulides, Katerina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1360541</ericid><atitle>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</atitle><jtitle>Educational and psychological measurement</jtitle><addtitle>Educ Psychol Meas</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>83</volume><issue>1</issue><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>36601254</pmid><doi>10.1177/00131644211073121</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7102-0303</orcidid><orcidid>https://orcid.org/0000-0001-8829-870X</orcidid><orcidid>https://orcid.org/0000-0001-7655-5668</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-1644
ispartof Educational and psychological measurement, 2023-02, Vol.83 (1), p.73-92
issn 0013-1644
1552-3888
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9806519
source SAGE Complete A-Z List; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Evaluation Methods
Simulation
Structural equation modeling
Structural Equation Models
title Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Simulated%20Annealing%20to%20Investigate%20Sensitivity%20of%20SEM%20to%20External%20Model%20Misspecification&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Fisk,%20Charles%20L.&rft.date=2023-02-01&rft.volume=83&rft.issue=1&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/00131644211073121&rft_dat=%3Cproquest_pubme%3E2761180670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759221250&rft_id=info:pmid/36601254&rft_ericid=EJ1360541&rft_sage_id=10.1177_00131644211073121&rfr_iscdi=true