Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification
Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify pa...
Gespeichert in:
Veröffentlicht in: | Educational and psychological measurement 2023-02, Vol.83 (1), p.73-92 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Educational and psychological measurement |
container_volume | 83 |
creator | Fisk, Charles L. Harring, Jeffrey R. Shen, Zuchao Leite, Walter Suen, King Yiu Marcoulides, Katerina M. |
description | Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed. |
doi_str_mv | 10.1177/00131644211073121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9806519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1360541</ericid><sage_id>10.1177_00131644211073121</sage_id><sourcerecordid>2761180670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi1ERYfCA7AARWLDJq2Pb0k2SFU1QFErFkO3WI5zMrjK2EPsjOjbE2vKAEX1wpb8f-c_N0JeAT0FqKozSoGDEoIB0IoDgydkAVKyktd1_ZQssl5m4Jg8j_GWzkcAPCPHXCkKTIoF-XYTnV8XK7eZBpOwK869RzPkvxSKS7_DmNx6VooV-uiS27l0V4S-WC2vM7H8mXD0ZiiuQ4fz7WLconW9sya54F-Qo94MEV_evyfk5sPy68Wn8urLx8uL86vSCiFTqfqqEW0PsqPW9D0TtWmQN600HGslWqs6VVW86ZSpWwWGtpRRpC2HzvCGU35C3u99t1O7wc6iT6MZ9HZ0GzPe6WCc_lfx7rteh51uaqokNLPBu3uDMfyY5qb1xkWLw2A8hilqVimAma1yrrcP0Nsw5RlkSjaMzZPNFOwpO4YYR-wPxQDVeXv6v-3NMW_-7uIQ8XtdM_B6D-Do7EFefgauqBTZ4HSvR7PGP2U9nvEXg8irqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759221250</pqid></control><display><type>article</type><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><source>SAGE Complete A-Z List</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</creator><creatorcontrib>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</creatorcontrib><description>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/00131644211073121</identifier><identifier>PMID: 36601254</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Algorithms ; Evaluation Methods ; Simulation ; Structural equation modeling ; Structural Equation Models</subject><ispartof>Educational and psychological measurement, 2023-02, Vol.83 (1), p.73-92</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022 2022 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</citedby><cites>FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</cites><orcidid>0000-0002-7102-0303 ; 0000-0001-8829-870X ; 0000-0001-7655-5668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806519/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806519/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,21800,27905,27906,43602,43603,53772,53774</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1360541$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36601254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisk, Charles L.</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Shen, Zuchao</creatorcontrib><creatorcontrib>Leite, Walter</creatorcontrib><creatorcontrib>Suen, King Yiu</creatorcontrib><creatorcontrib>Marcoulides, Katerina M.</creatorcontrib><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><title>Educational and psychological measurement</title><addtitle>Educ Psychol Meas</addtitle><description>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</description><subject>Algorithms</subject><subject>Evaluation Methods</subject><subject>Simulation</subject><subject>Structural equation modeling</subject><subject>Structural Equation Models</subject><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi1ERYfCA7AARWLDJq2Pb0k2SFU1QFErFkO3WI5zMrjK2EPsjOjbE2vKAEX1wpb8f-c_N0JeAT0FqKozSoGDEoIB0IoDgydkAVKyktd1_ZQssl5m4Jg8j_GWzkcAPCPHXCkKTIoF-XYTnV8XK7eZBpOwK869RzPkvxSKS7_DmNx6VooV-uiS27l0V4S-WC2vM7H8mXD0ZiiuQ4fz7WLconW9sya54F-Qo94MEV_evyfk5sPy68Wn8urLx8uL86vSCiFTqfqqEW0PsqPW9D0TtWmQN600HGslWqs6VVW86ZSpWwWGtpRRpC2HzvCGU35C3u99t1O7wc6iT6MZ9HZ0GzPe6WCc_lfx7rteh51uaqokNLPBu3uDMfyY5qb1xkWLw2A8hilqVimAma1yrrcP0Nsw5RlkSjaMzZPNFOwpO4YYR-wPxQDVeXv6v-3NMW_-7uIQ8XtdM_B6D-Do7EFefgauqBTZ4HSvR7PGP2U9nvEXg8irqA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Fisk, Charles L.</creator><creator>Harring, Jeffrey R.</creator><creator>Shen, Zuchao</creator><creator>Leite, Walter</creator><creator>Suen, King Yiu</creator><creator>Marcoulides, Katerina M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7102-0303</orcidid><orcidid>https://orcid.org/0000-0001-8829-870X</orcidid><orcidid>https://orcid.org/0000-0001-7655-5668</orcidid></search><sort><creationdate>20230201</creationdate><title>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</title><author>Fisk, Charles L. ; Harring, Jeffrey R. ; Shen, Zuchao ; Leite, Walter ; Suen, King Yiu ; Marcoulides, Katerina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6f794bf15d0caff248a9e39b5a3e864bc6d67739d6a8b61a0b020e0b31da39303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Evaluation Methods</topic><topic>Simulation</topic><topic>Structural equation modeling</topic><topic>Structural Equation Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisk, Charles L.</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Shen, Zuchao</creatorcontrib><creatorcontrib>Leite, Walter</creatorcontrib><creatorcontrib>Suen, King Yiu</creatorcontrib><creatorcontrib>Marcoulides, Katerina M.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisk, Charles L.</au><au>Harring, Jeffrey R.</au><au>Shen, Zuchao</au><au>Leite, Walter</au><au>Suen, King Yiu</au><au>Marcoulides, Katerina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1360541</ericid><atitle>Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification</atitle><jtitle>Educational and psychological measurement</jtitle><addtitle>Educ Psychol Meas</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>83</volume><issue>1</issue><spage>73</spage><epage>92</epage><pages>73-92</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>36601254</pmid><doi>10.1177/00131644211073121</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7102-0303</orcidid><orcidid>https://orcid.org/0000-0001-8829-870X</orcidid><orcidid>https://orcid.org/0000-0001-7655-5668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-1644 |
ispartof | Educational and psychological measurement, 2023-02, Vol.83 (1), p.73-92 |
issn | 0013-1644 1552-3888 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9806519 |
source | SAGE Complete A-Z List; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Evaluation Methods Simulation Structural equation modeling Structural Equation Models |
title | Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Simulated%20Annealing%20to%20Investigate%20Sensitivity%20of%20SEM%20to%20External%20Model%20Misspecification&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Fisk,%20Charles%20L.&rft.date=2023-02-01&rft.volume=83&rft.issue=1&rft.spage=73&rft.epage=92&rft.pages=73-92&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/00131644211073121&rft_dat=%3Cproquest_pubme%3E2761180670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759221250&rft_id=info:pmid/36601254&rft_ericid=EJ1360541&rft_sage_id=10.1177_00131644211073121&rfr_iscdi=true |