Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition
Purpose Quasi‐diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient,D1,2$$ {D}_{1,2} $$ in mm2 s−1 and a fractional exponent, α$$ \upalpha $$, defining the non‐Gaussianity of the...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2022-12, Vol.88 (6), p.2532-2547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2547 |
---|---|
container_issue | 6 |
container_start_page | 2532 |
container_title | Magnetic resonance in medicine |
container_volume | 88 |
creator | Spilling, Catherine A. Howe, Franklyn A. Barrick, Thomas R. |
description | Purpose
Quasi‐diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient,D1,2$$ {D}_{1,2} $$ in mm2 s−1 and a fractional exponent, α$$ \upalpha $$, defining the non‐Gaussianity of the diffusion signal decay. Here, the b‐value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized.
Methods
Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi‐b‐value reference (MbR) dataset comprising 29 diffusion‐sensitized images arrayed between b=0$$ b=0 $$ and 5000 s mm−2. The effects of varying maximum b‐value (bmax$$ {b}_{\mathrm{max}} $$), number of b‐value shells, and the effects of Rician noise were investigated.
Results
QDTI measures showed bmax$$ {b}_{\mathrm{max}} $$ dependence, most significantly for α$$ \upalpha $$ in white matter, which monotonically decreased with higher bmax$$ {b}_{\mathrm{max}} $$ leading to improved tissue contrast. Optimized 2 b‐value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation ofD1,2$$ \kern0.50em {D}_{1,2} $$ and underestimation of α$$ \upalpha $$ in white matter, and overestimation of D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at bmax=5000$$ {b}_{\mathrm{max}}=5000 $$ s mm−2, and 4 b‐value shells at bmax=3960$$ {b}_{\mathrm{max}}=3960 $$ s mm−2, providing minimal bias in D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ compared to the MbR.
Conclusion
A highly detailed optimization of non‐Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non‐Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures. |
doi_str_mv | 10.1002/mrm.29420 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719388564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4030-9f4870667385e916e3be45b108cf0f37987870f3ff56e0bca90f4c2d7f9a64493</originalsourceid><addsrcrecordid>eNp1kdFqFDEUhkNR7Hb1oi8gA72xF9OemSSTyU1Biq1CS0H0OmSzJ2vKTLKbzLSsVz6Cz9gnacatRQWvAjlfvvyHn5DDCk4qgPq0j_1JLVkNe2RW8bouay7ZCzIDwaCklWT75CClWwCQUrBXZJ82wJkQ7Yzc36wH17vvenDBF8EWm1En9_Dj59JZO6bpstcrj4MzRcQUvPYGC5fvnF8VNsTpgR_ckAV3WGhjxqjNttB-WWQxZhNa64xDP-TpZnTJTV-9Ji-t7hK-eTrn5OvFhy_nH8urm8tP5--vSsOAQiktawU0jaAtR1k1SBfI-KKC1liwVMhW5Lml1vIGYWG0BMtMvRRW6oYxSefkbOddj4selybHiLpT65hXiFsVtFN_T7z7plbhTskWGAeWBe-eBDFsRkyD6l0y2HXaYxiTqgVIQQXPEefk6B_0NozR5_UyVUnatryZhMc7ysSQUkT7HKYCNdWpcp3qV52Zfftn-mfyd38ZON0B967D7f9N6vrz9U75CNOArsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719388564</pqid></control><display><type>article</type><title>Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Spilling, Catherine A. ; Howe, Franklyn A. ; Barrick, Thomas R.</creator><creatorcontrib>Spilling, Catherine A. ; Howe, Franklyn A. ; Barrick, Thomas R.</creatorcontrib><description>Purpose
Quasi‐diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient,D1,2$$ {D}_{1,2} $$ in mm2 s−1 and a fractional exponent, α$$ \upalpha $$, defining the non‐Gaussianity of the diffusion signal decay. Here, the b‐value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized.
Methods
Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi‐b‐value reference (MbR) dataset comprising 29 diffusion‐sensitized images arrayed between b=0$$ b=0 $$ and 5000 s mm−2. The effects of varying maximum b‐value (bmax$$ {b}_{\mathrm{max}} $$), number of b‐value shells, and the effects of Rician noise were investigated.
Results
QDTI measures showed bmax$$ {b}_{\mathrm{max}} $$ dependence, most significantly for α$$ \upalpha $$ in white matter, which monotonically decreased with higher bmax$$ {b}_{\mathrm{max}} $$ leading to improved tissue contrast. Optimized 2 b‐value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation ofD1,2$$ \kern0.50em {D}_{1,2} $$ and underestimation of α$$ \upalpha $$ in white matter, and overestimation of D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at bmax=5000$$ {b}_{\mathrm{max}}=5000 $$ s mm−2, and 4 b‐value shells at bmax=3960$$ {b}_{\mathrm{max}}=3960 $$ s mm−2, providing minimal bias in D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ compared to the MbR.
Conclusion
A highly detailed optimization of non‐Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non‐Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29420</identifier><identifier>PMID: 36054778</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Anisotropy ; Brain - diagnostic imaging ; Brain - pathology ; Decay ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; Estimates ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging Methodology ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Neuroimaging ; Noise ; non‐Gaussian diffusion MRI ; Optimization ; Parameterization ; Quantitative analysis ; quasi‐diffusion MRI ; Random walk ; Reliability ; Reproducibility of Results ; Shells ; Substantia alba ; Tensors ; White Matter</subject><ispartof>Magnetic resonance in medicine, 2022-12, Vol.88 (6), p.2532-2547</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4030-9f4870667385e916e3be45b108cf0f37987870f3ff56e0bca90f4c2d7f9a64493</cites><orcidid>0000-0002-7135-3351 ; 0000-0002-6908-5079 ; 0000-0003-1783-3650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.29420$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.29420$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36054778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spilling, Catherine A.</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Barrick, Thomas R.</creatorcontrib><title>Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
Quasi‐diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient,D1,2$$ {D}_{1,2} $$ in mm2 s−1 and a fractional exponent, α$$ \upalpha $$, defining the non‐Gaussianity of the diffusion signal decay. Here, the b‐value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized.
Methods
Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi‐b‐value reference (MbR) dataset comprising 29 diffusion‐sensitized images arrayed between b=0$$ b=0 $$ and 5000 s mm−2. The effects of varying maximum b‐value (bmax$$ {b}_{\mathrm{max}} $$), number of b‐value shells, and the effects of Rician noise were investigated.
Results
QDTI measures showed bmax$$ {b}_{\mathrm{max}} $$ dependence, most significantly for α$$ \upalpha $$ in white matter, which monotonically decreased with higher bmax$$ {b}_{\mathrm{max}} $$ leading to improved tissue contrast. Optimized 2 b‐value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation ofD1,2$$ \kern0.50em {D}_{1,2} $$ and underestimation of α$$ \upalpha $$ in white matter, and overestimation of D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at bmax=5000$$ {b}_{\mathrm{max}}=5000 $$ s mm−2, and 4 b‐value shells at bmax=3960$$ {b}_{\mathrm{max}}=3960 $$ s mm−2, providing minimal bias in D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ compared to the MbR.
Conclusion
A highly detailed optimization of non‐Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non‐Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures.</description><subject>Accuracy</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Decay</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Estimates</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging Methodology</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>non‐Gaussian diffusion MRI</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Quantitative analysis</subject><subject>quasi‐diffusion MRI</subject><subject>Random walk</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Shells</subject><subject>Substantia alba</subject><subject>Tensors</subject><subject>White Matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kdFqFDEUhkNR7Hb1oi8gA72xF9OemSSTyU1Biq1CS0H0OmSzJ2vKTLKbzLSsVz6Cz9gnacatRQWvAjlfvvyHn5DDCk4qgPq0j_1JLVkNe2RW8bouay7ZCzIDwaCklWT75CClWwCQUrBXZJ82wJkQ7Yzc36wH17vvenDBF8EWm1En9_Dj59JZO6bpstcrj4MzRcQUvPYGC5fvnF8VNsTpgR_ckAV3WGhjxqjNttB-WWQxZhNa64xDP-TpZnTJTV-9Ji-t7hK-eTrn5OvFhy_nH8urm8tP5--vSsOAQiktawU0jaAtR1k1SBfI-KKC1liwVMhW5Lml1vIGYWG0BMtMvRRW6oYxSefkbOddj4selybHiLpT65hXiFsVtFN_T7z7plbhTskWGAeWBe-eBDFsRkyD6l0y2HXaYxiTqgVIQQXPEefk6B_0NozR5_UyVUnatryZhMc7ysSQUkT7HKYCNdWpcp3qV52Zfftn-mfyd38ZON0B967D7f9N6vrz9U75CNOArsQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Spilling, Catherine A.</creator><creator>Howe, Franklyn A.</creator><creator>Barrick, Thomas R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7135-3351</orcidid><orcidid>https://orcid.org/0000-0002-6908-5079</orcidid><orcidid>https://orcid.org/0000-0003-1783-3650</orcidid></search><sort><creationdate>202212</creationdate><title>Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition</title><author>Spilling, Catherine A. ; Howe, Franklyn A. ; Barrick, Thomas R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4030-9f4870667385e916e3be45b108cf0f37987870f3ff56e0bca90f4c2d7f9a64493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Decay</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Estimates</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging Methodology</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>non‐Gaussian diffusion MRI</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Quantitative analysis</topic><topic>quasi‐diffusion MRI</topic><topic>Random walk</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Shells</topic><topic>Substantia alba</topic><topic>Tensors</topic><topic>White Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spilling, Catherine A.</creatorcontrib><creatorcontrib>Howe, Franklyn A.</creatorcontrib><creatorcontrib>Barrick, Thomas R.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spilling, Catherine A.</au><au>Howe, Franklyn A.</au><au>Barrick, Thomas R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2022-12</date><risdate>2022</risdate><volume>88</volume><issue>6</issue><spage>2532</spage><epage>2547</epage><pages>2532-2547</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
Quasi‐diffusion MRI (QDI) is a novel quantitative technique based on the continuous time random walk model of diffusion dynamics. QDI provides estimates of the diffusion coefficient,D1,2$$ {D}_{1,2} $$ in mm2 s−1 and a fractional exponent, α$$ \upalpha $$, defining the non‐Gaussianity of the diffusion signal decay. Here, the b‐value selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is optimized.
Methods
Clinically appropriate QDTI acquisitions were optimized in healthy volunteers with respect to a multi‐b‐value reference (MbR) dataset comprising 29 diffusion‐sensitized images arrayed between b=0$$ b=0 $$ and 5000 s mm−2. The effects of varying maximum b‐value (bmax$$ {b}_{\mathrm{max}} $$), number of b‐value shells, and the effects of Rician noise were investigated.
Results
QDTI measures showed bmax$$ {b}_{\mathrm{max}} $$ dependence, most significantly for α$$ \upalpha $$ in white matter, which monotonically decreased with higher bmax$$ {b}_{\mathrm{max}} $$ leading to improved tissue contrast. Optimized 2 b‐value shell acquisitions showed small systematic differences in QDTI measures relative to MbR values, with overestimation ofD1,2$$ \kern0.50em {D}_{1,2} $$ and underestimation of α$$ \upalpha $$ in white matter, and overestimation of D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ anisotropies in gray and white matter. Additional shells improved the accuracy, precision, and reliability of QDTI estimates with 3 and 4 shells at bmax=5000$$ {b}_{\mathrm{max}}=5000 $$ s mm−2, and 4 b‐value shells at bmax=3960$$ {b}_{\mathrm{max}}=3960 $$ s mm−2, providing minimal bias in D1,2$$ {D}_{1,2} $$ and α$$ \upalpha $$ compared to the MbR.
Conclusion
A highly detailed optimization of non‐Gaussian dMRI for in vivo brain imaging was performed. QDI provided robust parameterization of non‐Gaussian diffusion signal decay in clinically feasible imaging times with high reliability, accuracy, and precision of QDTI measures.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36054778</pmid><doi>10.1002/mrm.29420</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7135-3351</orcidid><orcidid>https://orcid.org/0000-0002-6908-5079</orcidid><orcidid>https://orcid.org/0000-0003-1783-3650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2022-12, Vol.88 (6), p.2532-2547 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804504 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Anisotropy Brain - diagnostic imaging Brain - pathology Decay Diffusion Diffusion coefficient Diffusion Magnetic Resonance Imaging - methods Estimates Humans Image Processing, Computer-Assisted - methods Imaging Methodology Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neuroimaging Noise non‐Gaussian diffusion MRI Optimization Parameterization Quantitative analysis quasi‐diffusion MRI Random walk Reliability Reproducibility of Results Shells Substantia alba Tensors White Matter |
title | Optimization of quasi‐diffusion magnetic resonance imaging for quantitative accuracy and time‐efficient acquisition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20quasi%E2%80%90diffusion%20magnetic%20resonance%20imaging%20for%20quantitative%20accuracy%20and%20time%E2%80%90efficient%20acquisition&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Spilling,%20Catherine%20A.&rft.date=2022-12&rft.volume=88&rft.issue=6&rft.spage=2532&rft.epage=2547&rft.pages=2532-2547&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29420&rft_dat=%3Cproquest_pubme%3E2719388564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719388564&rft_id=info:pmid/36054778&rfr_iscdi=true |