Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer
Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom‐up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-09, Vol.61 (39), p.e202207998-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | e202207998 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Souza Melchiors, Marina Ivanov, Tsvetomir Harley, Iain Sayer, Claudia Araújo, Pedro H. H. Caire da Silva, Lucas Ferguson, Calum T. J. Landfester, Katharina |
description | Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom‐up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts, as well as having a broad range of chemical functionalities. However, the stability of the membrane can prohibit dynamic processes such as membrane phase separation and division. Here, we present a method for manipulating the membrane of giant polymersomes using a temperature responsive polymer. Upon elevation of temperature deformation and phase separation of the membrane was observed. Upon cooling, the membrane relaxed and became homogeneous again, with infrequent division of the synthetic cells.
Membrane manipulation of giant polymers using a temperature‐responsive polymer is reported. The strategy makes it possible to develop materials and create compartmentalized systems that can mimic the adaptive properties of biomembranes. |
doi_str_mv | 10.1002/anie.202207998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715422622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4688-c42325457838cf7ad3b89d3ce1a8416fcd4fa2a1d6e9c6bf94e64dfbd69eb3a53</originalsourceid><addsrcrecordid>eNqFkU1PFTEUhhujAUS2Ls0kbtjca7-m025MCEEkASUE3Dadzhkp6bRjOwO5O3-Cv9FfYm8uXD82btomfc6T8-ZF6DXBS4IxfWeCgyXFlOJGKfkM7ZGakgVrGva8vDlji0bWZBe9zPmu8FJisYN2Wa2oEljtIXsBQ5tMgOqiqMbZm8nFUMW-OnUmTNVNcN4M4L1J1WX0qwFS9QWysx5y9eCm28pU1zCMkMw0J_j5_ccV5DGG7O7haeAVetEbn-Hg8d5HNx9Oro8_Ls4_n54dH50vLBdSlpMyWvO6kUzavjEda6XqmAViJCeitx3vDTWkE6CsaHvFQfCubzuhoGWmZvvo_cY7zu0AnYUwJeP1mNxg0kpH4_TfP8Hd6q_xXiuJOW9UERw-ClL8NkOe9OCyXYcPEOesqVCqwZJTUdC3_6B3cU6hxNO0ITWnVFBaqOWGsinmnKDfLkOwXven1_3pbX9l4M2fEbb4U2EFUBvgwXlY_Uenjz6dnfyW_wIMHqtL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715422622</pqid></control><display><type>article</type><title>Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Souza Melchiors, Marina ; Ivanov, Tsvetomir ; Harley, Iain ; Sayer, Claudia ; Araújo, Pedro H. H. ; Caire da Silva, Lucas ; Ferguson, Calum T. J. ; Landfester, Katharina</creator><creatorcontrib>Souza Melchiors, Marina ; Ivanov, Tsvetomir ; Harley, Iain ; Sayer, Claudia ; Araújo, Pedro H. H. ; Caire da Silva, Lucas ; Ferguson, Calum T. J. ; Landfester, Katharina</creatorcontrib><description>Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom‐up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts, as well as having a broad range of chemical functionalities. However, the stability of the membrane can prohibit dynamic processes such as membrane phase separation and division. Here, we present a method for manipulating the membrane of giant polymersomes using a temperature responsive polymer. Upon elevation of temperature deformation and phase separation of the membrane was observed. Upon cooling, the membrane relaxed and became homogeneous again, with infrequent division of the synthetic cells.
Membrane manipulation of giant polymers using a temperature‐responsive polymer is reported. The strategy makes it possible to develop materials and create compartmentalized systems that can mimic the adaptive properties of biomembranes.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202207998</identifier><identifier>PMID: 35929609</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Artificial Cells ; Biomimetic Membranes ; Block Copolymers ; Cell membranes ; Communication ; Communications ; Dynamic stability ; Membrane Manipulation ; Membranes ; Phase Separation ; Phase Transition ; Polymers ; Polymersomes ; Temperature ; Unilamellar Liposomes ; Vesicles</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202207998-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4688-c42325457838cf7ad3b89d3ce1a8416fcd4fa2a1d6e9c6bf94e64dfbd69eb3a53</citedby><cites>FETCH-LOGICAL-c4688-c42325457838cf7ad3b89d3ce1a8416fcd4fa2a1d6e9c6bf94e64dfbd69eb3a53</cites><orcidid>0000-0002-6168-4624 ; 0000-0001-5905-0158 ; 0000-0003-4663-3471 ; 0000-0003-1044-2905 ; 0000-0002-0199-9472 ; 0000-0002-3767-4450 ; 0000-0001-9591-4638 ; 0000-0001-7236-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202207998$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202207998$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35929609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Souza Melchiors, Marina</creatorcontrib><creatorcontrib>Ivanov, Tsvetomir</creatorcontrib><creatorcontrib>Harley, Iain</creatorcontrib><creatorcontrib>Sayer, Claudia</creatorcontrib><creatorcontrib>Araújo, Pedro H. H.</creatorcontrib><creatorcontrib>Caire da Silva, Lucas</creatorcontrib><creatorcontrib>Ferguson, Calum T. J.</creatorcontrib><creatorcontrib>Landfester, Katharina</creatorcontrib><title>Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom‐up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts, as well as having a broad range of chemical functionalities. However, the stability of the membrane can prohibit dynamic processes such as membrane phase separation and division. Here, we present a method for manipulating the membrane of giant polymersomes using a temperature responsive polymer. Upon elevation of temperature deformation and phase separation of the membrane was observed. Upon cooling, the membrane relaxed and became homogeneous again, with infrequent division of the synthetic cells.
Membrane manipulation of giant polymers using a temperature‐responsive polymer is reported. The strategy makes it possible to develop materials and create compartmentalized systems that can mimic the adaptive properties of biomembranes.</description><subject>Artificial Cells</subject><subject>Biomimetic Membranes</subject><subject>Block Copolymers</subject><subject>Cell membranes</subject><subject>Communication</subject><subject>Communications</subject><subject>Dynamic stability</subject><subject>Membrane Manipulation</subject><subject>Membranes</subject><subject>Phase Separation</subject><subject>Phase Transition</subject><subject>Polymers</subject><subject>Polymersomes</subject><subject>Temperature</subject><subject>Unilamellar Liposomes</subject><subject>Vesicles</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1PFTEUhhujAUS2Ls0kbtjca7-m025MCEEkASUE3Dadzhkp6bRjOwO5O3-Cv9FfYm8uXD82btomfc6T8-ZF6DXBS4IxfWeCgyXFlOJGKfkM7ZGakgVrGva8vDlji0bWZBe9zPmu8FJisYN2Wa2oEljtIXsBQ5tMgOqiqMbZm8nFUMW-OnUmTNVNcN4M4L1J1WX0qwFS9QWysx5y9eCm28pU1zCMkMw0J_j5_ccV5DGG7O7haeAVetEbn-Hg8d5HNx9Oro8_Ls4_n54dH50vLBdSlpMyWvO6kUzavjEda6XqmAViJCeitx3vDTWkE6CsaHvFQfCubzuhoGWmZvvo_cY7zu0AnYUwJeP1mNxg0kpH4_TfP8Hd6q_xXiuJOW9UERw-ClL8NkOe9OCyXYcPEOesqVCqwZJTUdC3_6B3cU6hxNO0ITWnVFBaqOWGsinmnKDfLkOwXven1_3pbX9l4M2fEbb4U2EFUBvgwXlY_Uenjz6dnfyW_wIMHqtL</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Souza Melchiors, Marina</creator><creator>Ivanov, Tsvetomir</creator><creator>Harley, Iain</creator><creator>Sayer, Claudia</creator><creator>Araújo, Pedro H. H.</creator><creator>Caire da Silva, Lucas</creator><creator>Ferguson, Calum T. J.</creator><creator>Landfester, Katharina</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6168-4624</orcidid><orcidid>https://orcid.org/0000-0001-5905-0158</orcidid><orcidid>https://orcid.org/0000-0003-4663-3471</orcidid><orcidid>https://orcid.org/0000-0003-1044-2905</orcidid><orcidid>https://orcid.org/0000-0002-0199-9472</orcidid><orcidid>https://orcid.org/0000-0002-3767-4450</orcidid><orcidid>https://orcid.org/0000-0001-9591-4638</orcidid><orcidid>https://orcid.org/0000-0001-7236-8283</orcidid></search><sort><creationdate>20220926</creationdate><title>Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer</title><author>Souza Melchiors, Marina ; Ivanov, Tsvetomir ; Harley, Iain ; Sayer, Claudia ; Araújo, Pedro H. H. ; Caire da Silva, Lucas ; Ferguson, Calum T. J. ; Landfester, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4688-c42325457838cf7ad3b89d3ce1a8416fcd4fa2a1d6e9c6bf94e64dfbd69eb3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Cells</topic><topic>Biomimetic Membranes</topic><topic>Block Copolymers</topic><topic>Cell membranes</topic><topic>Communication</topic><topic>Communications</topic><topic>Dynamic stability</topic><topic>Membrane Manipulation</topic><topic>Membranes</topic><topic>Phase Separation</topic><topic>Phase Transition</topic><topic>Polymers</topic><topic>Polymersomes</topic><topic>Temperature</topic><topic>Unilamellar Liposomes</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza Melchiors, Marina</creatorcontrib><creatorcontrib>Ivanov, Tsvetomir</creatorcontrib><creatorcontrib>Harley, Iain</creatorcontrib><creatorcontrib>Sayer, Claudia</creatorcontrib><creatorcontrib>Araújo, Pedro H. H.</creatorcontrib><creatorcontrib>Caire da Silva, Lucas</creatorcontrib><creatorcontrib>Ferguson, Calum T. J.</creatorcontrib><creatorcontrib>Landfester, Katharina</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza Melchiors, Marina</au><au>Ivanov, Tsvetomir</au><au>Harley, Iain</au><au>Sayer, Claudia</au><au>Araújo, Pedro H. H.</au><au>Caire da Silva, Lucas</au><au>Ferguson, Calum T. J.</au><au>Landfester, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-09-26</date><risdate>2022</risdate><volume>61</volume><issue>39</issue><spage>e202207998</spage><epage>n/a</epage><pages>e202207998-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Understanding the complex behavior and dynamics of cellular membranes is integral to gain insight into cellular division and fusion processes. Bottom‐up synthetic cells are as a platform for replicating and probing cellular behavior. Giant polymer vesicles are more robust than liposomal counterparts, as well as having a broad range of chemical functionalities. However, the stability of the membrane can prohibit dynamic processes such as membrane phase separation and division. Here, we present a method for manipulating the membrane of giant polymersomes using a temperature responsive polymer. Upon elevation of temperature deformation and phase separation of the membrane was observed. Upon cooling, the membrane relaxed and became homogeneous again, with infrequent division of the synthetic cells.
Membrane manipulation of giant polymers using a temperature‐responsive polymer is reported. The strategy makes it possible to develop materials and create compartmentalized systems that can mimic the adaptive properties of biomembranes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35929609</pmid><doi>10.1002/anie.202207998</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6168-4624</orcidid><orcidid>https://orcid.org/0000-0001-5905-0158</orcidid><orcidid>https://orcid.org/0000-0003-4663-3471</orcidid><orcidid>https://orcid.org/0000-0003-1044-2905</orcidid><orcidid>https://orcid.org/0000-0002-0199-9472</orcidid><orcidid>https://orcid.org/0000-0002-3767-4450</orcidid><orcidid>https://orcid.org/0000-0001-9591-4638</orcidid><orcidid>https://orcid.org/0000-0001-7236-8283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-09, Vol.61 (39), p.e202207998-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804479 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Artificial Cells Biomimetic Membranes Block Copolymers Cell membranes Communication Communications Dynamic stability Membrane Manipulation Membranes Phase Separation Phase Transition Polymers Polymersomes Temperature Unilamellar Liposomes Vesicles |
title | Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20Manipulation%20of%20Giant%20Unilamellar%20Polymer%20Vesicles%20with%20a%20Temperature%E2%80%90Responsive%20Polymer&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Souza%20Melchiors,%20Marina&rft.date=2022-09-26&rft.volume=61&rft.issue=39&rft.spage=e202207998&rft.epage=n/a&rft.pages=e202207998-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202207998&rft_dat=%3Cproquest_pubme%3E2715422622%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715422622&rft_id=info:pmid/35929609&rfr_iscdi=true |