Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs
Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not...
Gespeichert in:
Veröffentlicht in: | Journal of the European Academy of Dermatology and Venereology 2022-12, Vol.36 (12), p.2525-2532 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2532 |
---|---|
container_issue | 12 |
container_start_page | 2525 |
container_title | Journal of the European Academy of Dermatology and Venereology |
container_volume | 36 |
creator | Amruthalingam, L. Gottfrois, P. Gonzalez Jimenez, A. Gökduman, B. Kunz, M. Koller, T. Pouly, M. Navarini, A.A. Maul, Julia‐Tatjana Maul, Lara V. Kostner, Lisa Jamiolkowski, Dagmar Erni, Barbara Hsu, Christophe Meienberger, Nina Nicolas Khouri, M. Christiane Palm, M. Damian Wuethrich, M. Anliker, Madeleine Manabu Rohr, M. Horvat, Matija Eckert, Noemie Kei Mathis, M. Salvatore Conticello, M. Baskaralingam, Sijamini Rotondi, Lea Pascal Kobel, M. |
description | Background
The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations.
Objective
Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.
Methods
Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations.
Results
The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations.
Conclusion
Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible. |
doi_str_mv | 10.1111/jdv.18476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698633569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</originalsourceid><addsrcrecordid>eNp1kc9O5SAUh4nRjFedhS9gunQWVaCFCxuTiePfmMxmxi05pbQXbaFC7zV35yP4jD6JOHWMsxgSQg7ny3cIP4T2CT4iaR3f1asjIso530AzUnKRF1gUm2iGJeW5lExuo50Y7zDGhDDxBW0XTNKypMUMVVf9EPzK1FltoXU-2phV6wyWo-9hTNc96OBfnp4zcKmwUwEOUt9q6LJgWutdwobBujbzTRbvrcuGhR99G2BYxD201UAXzdf3cxf9Pj_7dXqZ3_y8uDr9fpPrkjCeEyGI1jVhtNFlMRegCcYADVSCEagJh7qcs4qTigKnkmHGcMNw2o3gHFixi04m77CselNr48YAnRqC7SGslQer_u04u1CtXykpcEkFTYLDd0HwD0sTR9XbqE3XgTN-GRXlUvCiYFwm9NuEpv-IMZjmYwzB6i0TlTJRfzJJ7MHnd32Qf0NIwPEEPNrOrP9vUtc_biflK2DYmk4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698633569</pqid></control><display><type>article</type><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M.</creator><creatorcontrib>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M. ; DERMANATOMY Consortium</creatorcontrib><description>Background
The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations.
Objective
Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.
Methods
Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations.
Results
The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations.
Conclusion
Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</description><identifier>ISSN: 0926-9959</identifier><identifier>EISSN: 1468-3083</identifier><identifier>DOI: 10.1111/jdv.18476</identifier><identifier>PMID: 35924423</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Databases, Factual ; Humans ; Original ; Original and Short Reports ; Retrospective Studies ; Skin - diagnostic imaging ; Skin - pathology</subject><ispartof>Journal of the European Academy of Dermatology and Venereology, 2022-12, Vol.36 (12), p.2525-2532</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.</rights><rights>2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</citedby><cites>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</cites><orcidid>0000-0001-5980-5469 ; 0000-0001-7059-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjdv.18476$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjdv.18476$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35924423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amruthalingam, L.</creatorcontrib><creatorcontrib>Gottfrois, P.</creatorcontrib><creatorcontrib>Gonzalez Jimenez, A.</creatorcontrib><creatorcontrib>Gökduman, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Koller, T.</creatorcontrib><creatorcontrib>Pouly, M.</creatorcontrib><creatorcontrib>Navarini, A.A.</creatorcontrib><creatorcontrib>Maul, Julia‐Tatjana</creatorcontrib><creatorcontrib>Maul, Lara V.</creatorcontrib><creatorcontrib>Kostner, Lisa</creatorcontrib><creatorcontrib>Jamiolkowski, Dagmar</creatorcontrib><creatorcontrib>Erni, Barbara</creatorcontrib><creatorcontrib>Hsu, Christophe</creatorcontrib><creatorcontrib>Meienberger, Nina</creatorcontrib><creatorcontrib>Nicolas Khouri, M.</creatorcontrib><creatorcontrib>Christiane Palm, M.</creatorcontrib><creatorcontrib>Damian Wuethrich, M.</creatorcontrib><creatorcontrib>Anliker, Madeleine</creatorcontrib><creatorcontrib>Manabu Rohr, M.</creatorcontrib><creatorcontrib>Horvat, Matija</creatorcontrib><creatorcontrib>Eckert, Noemie</creatorcontrib><creatorcontrib>Kei Mathis, M.</creatorcontrib><creatorcontrib>Salvatore Conticello, M.</creatorcontrib><creatorcontrib>Baskaralingam, Sijamini</creatorcontrib><creatorcontrib>Rotondi, Lea</creatorcontrib><creatorcontrib>Pascal Kobel, M.</creatorcontrib><creatorcontrib>DERMANATOMY Consortium</creatorcontrib><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><title>Journal of the European Academy of Dermatology and Venereology</title><addtitle>J Eur Acad Dermatol Venereol</addtitle><description>Background
The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations.
Objective
Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.
Methods
Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations.
Results
The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations.
Conclusion
Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</description><subject>Databases, Factual</subject><subject>Humans</subject><subject>Original</subject><subject>Original and Short Reports</subject><subject>Retrospective Studies</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><issn>0926-9959</issn><issn>1468-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9O5SAUh4nRjFedhS9gunQWVaCFCxuTiePfmMxmxi05pbQXbaFC7zV35yP4jD6JOHWMsxgSQg7ny3cIP4T2CT4iaR3f1asjIso530AzUnKRF1gUm2iGJeW5lExuo50Y7zDGhDDxBW0XTNKypMUMVVf9EPzK1FltoXU-2phV6wyWo-9hTNc96OBfnp4zcKmwUwEOUt9q6LJgWutdwobBujbzTRbvrcuGhR99G2BYxD201UAXzdf3cxf9Pj_7dXqZ3_y8uDr9fpPrkjCeEyGI1jVhtNFlMRegCcYADVSCEagJh7qcs4qTigKnkmHGcMNw2o3gHFixi04m77CselNr48YAnRqC7SGslQer_u04u1CtXykpcEkFTYLDd0HwD0sTR9XbqE3XgTN-GRXlUvCiYFwm9NuEpv-IMZjmYwzB6i0TlTJRfzJJ7MHnd32Qf0NIwPEEPNrOrP9vUtc_biflK2DYmk4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Amruthalingam, L.</creator><creator>Gottfrois, P.</creator><creator>Gonzalez Jimenez, A.</creator><creator>Gökduman, B.</creator><creator>Kunz, M.</creator><creator>Koller, T.</creator><creator>Pouly, M.</creator><creator>Navarini, A.A.</creator><creator>Maul, Julia‐Tatjana</creator><creator>Maul, Lara V.</creator><creator>Kostner, Lisa</creator><creator>Jamiolkowski, Dagmar</creator><creator>Erni, Barbara</creator><creator>Hsu, Christophe</creator><creator>Meienberger, Nina</creator><creator>Nicolas Khouri, M.</creator><creator>Christiane Palm, M.</creator><creator>Damian Wuethrich, M.</creator><creator>Anliker, Madeleine</creator><creator>Manabu Rohr, M.</creator><creator>Horvat, Matija</creator><creator>Eckert, Noemie</creator><creator>Kei Mathis, M.</creator><creator>Salvatore Conticello, M.</creator><creator>Baskaralingam, Sijamini</creator><creator>Rotondi, Lea</creator><creator>Pascal Kobel, M.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5980-5469</orcidid><orcidid>https://orcid.org/0000-0001-7059-632X</orcidid></search><sort><creationdate>202212</creationdate><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><author>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Databases, Factual</topic><topic>Humans</topic><topic>Original</topic><topic>Original and Short Reports</topic><topic>Retrospective Studies</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amruthalingam, L.</creatorcontrib><creatorcontrib>Gottfrois, P.</creatorcontrib><creatorcontrib>Gonzalez Jimenez, A.</creatorcontrib><creatorcontrib>Gökduman, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Koller, T.</creatorcontrib><creatorcontrib>Pouly, M.</creatorcontrib><creatorcontrib>Navarini, A.A.</creatorcontrib><creatorcontrib>Maul, Julia‐Tatjana</creatorcontrib><creatorcontrib>Maul, Lara V.</creatorcontrib><creatorcontrib>Kostner, Lisa</creatorcontrib><creatorcontrib>Jamiolkowski, Dagmar</creatorcontrib><creatorcontrib>Erni, Barbara</creatorcontrib><creatorcontrib>Hsu, Christophe</creatorcontrib><creatorcontrib>Meienberger, Nina</creatorcontrib><creatorcontrib>Nicolas Khouri, M.</creatorcontrib><creatorcontrib>Christiane Palm, M.</creatorcontrib><creatorcontrib>Damian Wuethrich, M.</creatorcontrib><creatorcontrib>Anliker, Madeleine</creatorcontrib><creatorcontrib>Manabu Rohr, M.</creatorcontrib><creatorcontrib>Horvat, Matija</creatorcontrib><creatorcontrib>Eckert, Noemie</creatorcontrib><creatorcontrib>Kei Mathis, M.</creatorcontrib><creatorcontrib>Salvatore Conticello, M.</creatorcontrib><creatorcontrib>Baskaralingam, Sijamini</creatorcontrib><creatorcontrib>Rotondi, Lea</creatorcontrib><creatorcontrib>Pascal Kobel, M.</creatorcontrib><creatorcontrib>DERMANATOMY Consortium</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the European Academy of Dermatology and Venereology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amruthalingam, L.</au><au>Gottfrois, P.</au><au>Gonzalez Jimenez, A.</au><au>Gökduman, B.</au><au>Kunz, M.</au><au>Koller, T.</au><au>Pouly, M.</au><au>Navarini, A.A.</au><au>Maul, Julia‐Tatjana</au><au>Maul, Lara V.</au><au>Kostner, Lisa</au><au>Jamiolkowski, Dagmar</au><au>Erni, Barbara</au><au>Hsu, Christophe</au><au>Meienberger, Nina</au><au>Nicolas Khouri, M.</au><au>Christiane Palm, M.</au><au>Damian Wuethrich, M.</au><au>Anliker, Madeleine</au><au>Manabu Rohr, M.</au><au>Horvat, Matija</au><au>Eckert, Noemie</au><au>Kei Mathis, M.</au><au>Salvatore Conticello, M.</au><au>Baskaralingam, Sijamini</au><au>Rotondi, Lea</au><au>Pascal Kobel, M.</au><aucorp>DERMANATOMY Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</atitle><jtitle>Journal of the European Academy of Dermatology and Venereology</jtitle><addtitle>J Eur Acad Dermatol Venereol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>36</volume><issue>12</issue><spage>2525</spage><epage>2532</epage><pages>2525-2532</pages><issn>0926-9959</issn><eissn>1468-3083</eissn><abstract>Background
The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations.
Objective
Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.
Methods
Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations.
Results
The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations.
Conclusion
Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>35924423</pmid><doi>10.1111/jdv.18476</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5980-5469</orcidid><orcidid>https://orcid.org/0000-0001-7059-632X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-9959 |
ispartof | Journal of the European Academy of Dermatology and Venereology, 2022-12, Vol.36 (12), p.2525-2532 |
issn | 0926-9959 1468-3083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804282 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Databases, Factual Humans Original Original and Short Reports Retrospective Studies Skin - diagnostic imaging Skin - pathology |
title | Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20diagnosis%20by%20automated%20macro%E2%80%90%20and%20micro%E2%80%90anatomical%20region%20mapping%20of%20skin%20photographs&rft.jtitle=Journal%20of%20the%20European%20Academy%20of%20Dermatology%20and%20Venereology&rft.au=Amruthalingam,%20L.&rft.aucorp=DERMANATOMY%20Consortium&rft.date=2022-12&rft.volume=36&rft.issue=12&rft.spage=2525&rft.epage=2532&rft.pages=2525-2532&rft.issn=0926-9959&rft.eissn=1468-3083&rft_id=info:doi/10.1111/jdv.18476&rft_dat=%3Cproquest_pubme%3E2698633569%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698633569&rft_id=info:pmid/35924423&rfr_iscdi=true |