Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs

Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Academy of Dermatology and Venereology 2022-12, Vol.36 (12), p.2525-2532
Hauptverfasser: Amruthalingam, L., Gottfrois, P., Gonzalez Jimenez, A., Gökduman, B., Kunz, M., Koller, T., Pouly, M., Navarini, A.A., Maul, Julia‐Tatjana, Maul, Lara V., Kostner, Lisa, Jamiolkowski, Dagmar, Erni, Barbara, Hsu, Christophe, Meienberger, Nina, Nicolas Khouri, M., Christiane Palm, M., Damian Wuethrich, M., Anliker, Madeleine, Manabu Rohr, M., Horvat, Matija, Eckert, Noemie, Kei Mathis, M., Salvatore Conticello, M., Baskaralingam, Sijamini, Rotondi, Lea, Pascal Kobel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2532
container_issue 12
container_start_page 2525
container_title Journal of the European Academy of Dermatology and Venereology
container_volume 36
creator Amruthalingam, L.
Gottfrois, P.
Gonzalez Jimenez, A.
Gökduman, B.
Kunz, M.
Koller, T.
Pouly, M.
Navarini, A.A.
Maul, Julia‐Tatjana
Maul, Lara V.
Kostner, Lisa
Jamiolkowski, Dagmar
Erni, Barbara
Hsu, Christophe
Meienberger, Nina
Nicolas Khouri, M.
Christiane Palm, M.
Damian Wuethrich, M.
Anliker, Madeleine
Manabu Rohr, M.
Horvat, Matija
Eckert, Noemie
Kei Mathis, M.
Salvatore Conticello, M.
Baskaralingam, Sijamini
Rotondi, Lea
Pascal Kobel, M.
description Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations. Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images. Methods Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations. Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations. Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.
doi_str_mv 10.1111/jdv.18476
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698633569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</originalsourceid><addsrcrecordid>eNp1kc9O5SAUh4nRjFedhS9gunQWVaCFCxuTiePfmMxmxi05pbQXbaFC7zV35yP4jD6JOHWMsxgSQg7ny3cIP4T2CT4iaR3f1asjIso530AzUnKRF1gUm2iGJeW5lExuo50Y7zDGhDDxBW0XTNKypMUMVVf9EPzK1FltoXU-2phV6wyWo-9hTNc96OBfnp4zcKmwUwEOUt9q6LJgWutdwobBujbzTRbvrcuGhR99G2BYxD201UAXzdf3cxf9Pj_7dXqZ3_y8uDr9fpPrkjCeEyGI1jVhtNFlMRegCcYADVSCEagJh7qcs4qTigKnkmHGcMNw2o3gHFixi04m77CselNr48YAnRqC7SGslQer_u04u1CtXykpcEkFTYLDd0HwD0sTR9XbqE3XgTN-GRXlUvCiYFwm9NuEpv-IMZjmYwzB6i0TlTJRfzJJ7MHnd32Qf0NIwPEEPNrOrP9vUtc_biflK2DYmk4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698633569</pqid></control><display><type>article</type><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M.</creator><creatorcontrib>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M. ; DERMANATOMY Consortium</creatorcontrib><description>Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations. Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images. Methods Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations. Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations. Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</description><identifier>ISSN: 0926-9959</identifier><identifier>EISSN: 1468-3083</identifier><identifier>DOI: 10.1111/jdv.18476</identifier><identifier>PMID: 35924423</identifier><language>eng</language><publisher>England: John Wiley and Sons Inc</publisher><subject>Databases, Factual ; Humans ; Original ; Original and Short Reports ; Retrospective Studies ; Skin - diagnostic imaging ; Skin - pathology</subject><ispartof>Journal of the European Academy of Dermatology and Venereology, 2022-12, Vol.36 (12), p.2525-2532</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Academy of Dermatology and Venereology.</rights><rights>2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley &amp; Sons Ltd on behalf of European Academy of Dermatology and Venereology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</citedby><cites>FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</cites><orcidid>0000-0001-5980-5469 ; 0000-0001-7059-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjdv.18476$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjdv.18476$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35924423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amruthalingam, L.</creatorcontrib><creatorcontrib>Gottfrois, P.</creatorcontrib><creatorcontrib>Gonzalez Jimenez, A.</creatorcontrib><creatorcontrib>Gökduman, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Koller, T.</creatorcontrib><creatorcontrib>Pouly, M.</creatorcontrib><creatorcontrib>Navarini, A.A.</creatorcontrib><creatorcontrib>Maul, Julia‐Tatjana</creatorcontrib><creatorcontrib>Maul, Lara V.</creatorcontrib><creatorcontrib>Kostner, Lisa</creatorcontrib><creatorcontrib>Jamiolkowski, Dagmar</creatorcontrib><creatorcontrib>Erni, Barbara</creatorcontrib><creatorcontrib>Hsu, Christophe</creatorcontrib><creatorcontrib>Meienberger, Nina</creatorcontrib><creatorcontrib>Nicolas Khouri, M.</creatorcontrib><creatorcontrib>Christiane Palm, M.</creatorcontrib><creatorcontrib>Damian Wuethrich, M.</creatorcontrib><creatorcontrib>Anliker, Madeleine</creatorcontrib><creatorcontrib>Manabu Rohr, M.</creatorcontrib><creatorcontrib>Horvat, Matija</creatorcontrib><creatorcontrib>Eckert, Noemie</creatorcontrib><creatorcontrib>Kei Mathis, M.</creatorcontrib><creatorcontrib>Salvatore Conticello, M.</creatorcontrib><creatorcontrib>Baskaralingam, Sijamini</creatorcontrib><creatorcontrib>Rotondi, Lea</creatorcontrib><creatorcontrib>Pascal Kobel, M.</creatorcontrib><creatorcontrib>DERMANATOMY Consortium</creatorcontrib><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><title>Journal of the European Academy of Dermatology and Venereology</title><addtitle>J Eur Acad Dermatol Venereol</addtitle><description>Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations. Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images. Methods Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations. Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations. Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</description><subject>Databases, Factual</subject><subject>Humans</subject><subject>Original</subject><subject>Original and Short Reports</subject><subject>Retrospective Studies</subject><subject>Skin - diagnostic imaging</subject><subject>Skin - pathology</subject><issn>0926-9959</issn><issn>1468-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc9O5SAUh4nRjFedhS9gunQWVaCFCxuTiePfmMxmxi05pbQXbaFC7zV35yP4jD6JOHWMsxgSQg7ny3cIP4T2CT4iaR3f1asjIso530AzUnKRF1gUm2iGJeW5lExuo50Y7zDGhDDxBW0XTNKypMUMVVf9EPzK1FltoXU-2phV6wyWo-9hTNc96OBfnp4zcKmwUwEOUt9q6LJgWutdwobBujbzTRbvrcuGhR99G2BYxD201UAXzdf3cxf9Pj_7dXqZ3_y8uDr9fpPrkjCeEyGI1jVhtNFlMRegCcYADVSCEagJh7qcs4qTigKnkmHGcMNw2o3gHFixi04m77CselNr48YAnRqC7SGslQer_u04u1CtXykpcEkFTYLDd0HwD0sTR9XbqE3XgTN-GRXlUvCiYFwm9NuEpv-IMZjmYwzB6i0TlTJRfzJJ7MHnd32Qf0NIwPEEPNrOrP9vUtc_biflK2DYmk4</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Amruthalingam, L.</creator><creator>Gottfrois, P.</creator><creator>Gonzalez Jimenez, A.</creator><creator>Gökduman, B.</creator><creator>Kunz, M.</creator><creator>Koller, T.</creator><creator>Pouly, M.</creator><creator>Navarini, A.A.</creator><creator>Maul, Julia‐Tatjana</creator><creator>Maul, Lara V.</creator><creator>Kostner, Lisa</creator><creator>Jamiolkowski, Dagmar</creator><creator>Erni, Barbara</creator><creator>Hsu, Christophe</creator><creator>Meienberger, Nina</creator><creator>Nicolas Khouri, M.</creator><creator>Christiane Palm, M.</creator><creator>Damian Wuethrich, M.</creator><creator>Anliker, Madeleine</creator><creator>Manabu Rohr, M.</creator><creator>Horvat, Matija</creator><creator>Eckert, Noemie</creator><creator>Kei Mathis, M.</creator><creator>Salvatore Conticello, M.</creator><creator>Baskaralingam, Sijamini</creator><creator>Rotondi, Lea</creator><creator>Pascal Kobel, M.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5980-5469</orcidid><orcidid>https://orcid.org/0000-0001-7059-632X</orcidid></search><sort><creationdate>202212</creationdate><title>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</title><author>Amruthalingam, L. ; Gottfrois, P. ; Gonzalez Jimenez, A. ; Gökduman, B. ; Kunz, M. ; Koller, T. ; Pouly, M. ; Navarini, A.A. ; Maul, Julia‐Tatjana ; Maul, Lara V. ; Kostner, Lisa ; Jamiolkowski, Dagmar ; Erni, Barbara ; Hsu, Christophe ; Meienberger, Nina ; Nicolas Khouri, M. ; Christiane Palm, M. ; Damian Wuethrich, M. ; Anliker, Madeleine ; Manabu Rohr, M. ; Horvat, Matija ; Eckert, Noemie ; Kei Mathis, M. ; Salvatore Conticello, M. ; Baskaralingam, Sijamini ; Rotondi, Lea ; Pascal Kobel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-1881ccd152fc4378ac100aafab851ad16ad475b61b2a62950550f500f5f866a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Databases, Factual</topic><topic>Humans</topic><topic>Original</topic><topic>Original and Short Reports</topic><topic>Retrospective Studies</topic><topic>Skin - diagnostic imaging</topic><topic>Skin - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amruthalingam, L.</creatorcontrib><creatorcontrib>Gottfrois, P.</creatorcontrib><creatorcontrib>Gonzalez Jimenez, A.</creatorcontrib><creatorcontrib>Gökduman, B.</creatorcontrib><creatorcontrib>Kunz, M.</creatorcontrib><creatorcontrib>Koller, T.</creatorcontrib><creatorcontrib>Pouly, M.</creatorcontrib><creatorcontrib>Navarini, A.A.</creatorcontrib><creatorcontrib>Maul, Julia‐Tatjana</creatorcontrib><creatorcontrib>Maul, Lara V.</creatorcontrib><creatorcontrib>Kostner, Lisa</creatorcontrib><creatorcontrib>Jamiolkowski, Dagmar</creatorcontrib><creatorcontrib>Erni, Barbara</creatorcontrib><creatorcontrib>Hsu, Christophe</creatorcontrib><creatorcontrib>Meienberger, Nina</creatorcontrib><creatorcontrib>Nicolas Khouri, M.</creatorcontrib><creatorcontrib>Christiane Palm, M.</creatorcontrib><creatorcontrib>Damian Wuethrich, M.</creatorcontrib><creatorcontrib>Anliker, Madeleine</creatorcontrib><creatorcontrib>Manabu Rohr, M.</creatorcontrib><creatorcontrib>Horvat, Matija</creatorcontrib><creatorcontrib>Eckert, Noemie</creatorcontrib><creatorcontrib>Kei Mathis, M.</creatorcontrib><creatorcontrib>Salvatore Conticello, M.</creatorcontrib><creatorcontrib>Baskaralingam, Sijamini</creatorcontrib><creatorcontrib>Rotondi, Lea</creatorcontrib><creatorcontrib>Pascal Kobel, M.</creatorcontrib><creatorcontrib>DERMANATOMY Consortium</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the European Academy of Dermatology and Venereology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amruthalingam, L.</au><au>Gottfrois, P.</au><au>Gonzalez Jimenez, A.</au><au>Gökduman, B.</au><au>Kunz, M.</au><au>Koller, T.</au><au>Pouly, M.</au><au>Navarini, A.A.</au><au>Maul, Julia‐Tatjana</au><au>Maul, Lara V.</au><au>Kostner, Lisa</au><au>Jamiolkowski, Dagmar</au><au>Erni, Barbara</au><au>Hsu, Christophe</au><au>Meienberger, Nina</au><au>Nicolas Khouri, M.</au><au>Christiane Palm, M.</au><au>Damian Wuethrich, M.</au><au>Anliker, Madeleine</au><au>Manabu Rohr, M.</au><au>Horvat, Matija</au><au>Eckert, Noemie</au><au>Kei Mathis, M.</au><au>Salvatore Conticello, M.</au><au>Baskaralingam, Sijamini</au><au>Rotondi, Lea</au><au>Pascal Kobel, M.</au><aucorp>DERMANATOMY Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs</atitle><jtitle>Journal of the European Academy of Dermatology and Venereology</jtitle><addtitle>J Eur Acad Dermatol Venereol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>36</volume><issue>12</issue><spage>2525</spage><epage>2532</epage><pages>2525-2532</pages><issn>0926-9959</issn><eissn>1468-3083</eissn><abstract>Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diagnosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermatosurgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack altogether. Automated determination of anatomical location could benefit both situations. Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images. Methods Retrospective study based on three datasets: macro‐anatomy for the main body regions with 6000 patient pictures partially labelled by a student, micro‐anatomy for the ear region with 182 pictures labelled by a student and DD with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95% CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pictures and locations. Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro‐anatomy, 81% (CI 80–83), 80% (CI 77–83) for micro‐anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD performance of 6% (McNemar test P‐value 0.0009) for both average precision and sensitivity when training with both lesion pictures and locations. Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method enables automated search of large clinical databases and make targeted anatomical image retrieval possible.</abstract><cop>England</cop><pub>John Wiley and Sons Inc</pub><pmid>35924423</pmid><doi>10.1111/jdv.18476</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5980-5469</orcidid><orcidid>https://orcid.org/0000-0001-7059-632X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-9959
ispartof Journal of the European Academy of Dermatology and Venereology, 2022-12, Vol.36 (12), p.2525-2532
issn 0926-9959
1468-3083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804282
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Databases, Factual
Humans
Original
Original and Short Reports
Retrospective Studies
Skin - diagnostic imaging
Skin - pathology
title Improved diagnosis by automated macro‐ and micro‐anatomical region mapping of skin photographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20diagnosis%20by%20automated%20macro%E2%80%90%20and%20micro%E2%80%90anatomical%20region%20mapping%20of%20skin%20photographs&rft.jtitle=Journal%20of%20the%20European%20Academy%20of%20Dermatology%20and%20Venereology&rft.au=Amruthalingam,%20L.&rft.aucorp=DERMANATOMY%20Consortium&rft.date=2022-12&rft.volume=36&rft.issue=12&rft.spage=2525&rft.epage=2532&rft.pages=2525-2532&rft.issn=0926-9959&rft.eissn=1468-3083&rft_id=info:doi/10.1111/jdv.18476&rft_dat=%3Cproquest_pubme%3E2698633569%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698633569&rft_id=info:pmid/35924423&rfr_iscdi=true