Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles

Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-01, Vol.299 (1), p.102657-102657, Article 102657
Hauptverfasser: Lee, Lindsey A., Barrick, Samantha K., Meller, Artur, Walklate, Jonathan, Lotthammer, Jeffrey M., Tay, Jian Wei, Stump, W. Tom, Bowman, Gregory, Geeves, Michael A., Greenberg, Michael J., Leinwand, Leslie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102657
container_issue 1
container_start_page 102657
container_title The Journal of biological chemistry
container_volume 299
creator Lee, Lindsey A.
Barrick, Samantha K.
Meller, Artur
Walklate, Jonathan
Lotthammer, Jeffrey M.
Tay, Jian Wei
Stump, W. Tom
Bowman, Gregory
Geeves, Michael A.
Greenberg, Michael J.
Leinwand, Leslie A.
description Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.
doi_str_mv 10.1016/j.jbc.2022.102657
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9800208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822011000</els_id><sourcerecordid>2732534458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-aeaba6dd71b964140392092a734486c9513bb318a2f0f92d16d47456dd3ac5b03</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOo7-ADfSpQs75tkHgiDiCxQ3CroKSXo7ZmibmrQD_nszjopuzOYScs7J5XwIHRA8I5hkJ4vZQpsZxZTGO81EvoEmBBcsZYI8b6IJxpSkJRXFDtoNYYHj4SXZRjssY4xnNJ8gdTV2ZrCuU01S2SX4OXQGElcnwyskQXnjWvDWJO27C7Y7Tu5fbnJ9nISx750fQhJ6MBZC-jnrKNTWNW5uTQz0roGwh7Zq1QTY_5pT9HR1-Xhxk949XN9enN-lhgsypAqUVllV5USXGSccs5LikqqccV5kphSEac1IoWiN65JWJKt4zkV0MGWExmyKzta5_ahbqAx0g1eN7L1tlX-XTln596Wzr3LulrIsYk-xtSk6-grw7m2EMMjWBgNNozpwY5A0Z1TEbcRKStZS410IHuqfbwiWKzRyISMauUIj12ii5_D3fj-ObxZRcLoWQGxpacHLEJuNNCrrwQyycvaf-A_th6BL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732534458</pqid></control><display><type>article</type><title>Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lee, Lindsey A. ; Barrick, Samantha K. ; Meller, Artur ; Walklate, Jonathan ; Lotthammer, Jeffrey M. ; Tay, Jian Wei ; Stump, W. Tom ; Bowman, Gregory ; Geeves, Michael A. ; Greenberg, Michael J. ; Leinwand, Leslie A.</creator><creatorcontrib>Lee, Lindsey A. ; Barrick, Samantha K. ; Meller, Artur ; Walklate, Jonathan ; Lotthammer, Jeffrey M. ; Tay, Jian Wei ; Stump, W. Tom ; Bowman, Gregory ; Geeves, Michael A. ; Greenberg, Michael J. ; Leinwand, Leslie A.</creatorcontrib><description>Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102657</identifier><identifier>PMID: 36334627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>actin ; Animals ; cardiac muscle ; Cardiac Myosins - genetics ; Cardiac Myosins - metabolism ; Humans ; interacting heads motif ; kinetics ; Mammals - metabolism ; molecular motor ; Muscle, Skeletal - metabolism ; myosin ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - metabolism ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; skeletal muscle ; structure–function ; super-relaxed state</subject><ispartof>The Journal of biological chemistry, 2023-01, Vol.299 (1), p.102657-102657, Article 102657</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-aeaba6dd71b964140392092a734486c9513bb318a2f0f92d16d47456dd3ac5b03</citedby><cites>FETCH-LOGICAL-c451t-aeaba6dd71b964140392092a734486c9513bb318a2f0f92d16d47456dd3ac5b03</cites><orcidid>0000-0002-5022-7006 ; 0000-0003-1320-3547 ; 0000-0002-0203-7769 ; 0000-0002-8634-5039 ; 0000-0002-5504-2684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800208/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800208/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36334627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Lindsey A.</creatorcontrib><creatorcontrib>Barrick, Samantha K.</creatorcontrib><creatorcontrib>Meller, Artur</creatorcontrib><creatorcontrib>Walklate, Jonathan</creatorcontrib><creatorcontrib>Lotthammer, Jeffrey M.</creatorcontrib><creatorcontrib>Tay, Jian Wei</creatorcontrib><creatorcontrib>Stump, W. Tom</creatorcontrib><creatorcontrib>Bowman, Gregory</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Greenberg, Michael J.</creatorcontrib><creatorcontrib>Leinwand, Leslie A.</creatorcontrib><title>Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.</description><subject>actin</subject><subject>Animals</subject><subject>cardiac muscle</subject><subject>Cardiac Myosins - genetics</subject><subject>Cardiac Myosins - metabolism</subject><subject>Humans</subject><subject>interacting heads motif</subject><subject>kinetics</subject><subject>Mammals - metabolism</subject><subject>molecular motor</subject><subject>Muscle, Skeletal - metabolism</subject><subject>myosin</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>skeletal muscle</subject><subject>structure–function</subject><subject>super-relaxed state</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoOo7-ADfSpQs75tkHgiDiCxQ3CroKSXo7ZmibmrQD_nszjopuzOYScs7J5XwIHRA8I5hkJ4vZQpsZxZTGO81EvoEmBBcsZYI8b6IJxpSkJRXFDtoNYYHj4SXZRjssY4xnNJ8gdTV2ZrCuU01S2SX4OXQGElcnwyskQXnjWvDWJO27C7Y7Tu5fbnJ9nISx750fQhJ6MBZC-jnrKNTWNW5uTQz0roGwh7Zq1QTY_5pT9HR1-Xhxk949XN9enN-lhgsypAqUVllV5USXGSccs5LikqqccV5kphSEac1IoWiN65JWJKt4zkV0MGWExmyKzta5_ahbqAx0g1eN7L1tlX-XTln596Wzr3LulrIsYk-xtSk6-grw7m2EMMjWBgNNozpwY5A0Z1TEbcRKStZS410IHuqfbwiWKzRyISMauUIj12ii5_D3fj-ObxZRcLoWQGxpacHLEJuNNCrrwQyycvaf-A_th6BL</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lee, Lindsey A.</creator><creator>Barrick, Samantha K.</creator><creator>Meller, Artur</creator><creator>Walklate, Jonathan</creator><creator>Lotthammer, Jeffrey M.</creator><creator>Tay, Jian Wei</creator><creator>Stump, W. Tom</creator><creator>Bowman, Gregory</creator><creator>Geeves, Michael A.</creator><creator>Greenberg, Michael J.</creator><creator>Leinwand, Leslie A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5022-7006</orcidid><orcidid>https://orcid.org/0000-0003-1320-3547</orcidid><orcidid>https://orcid.org/0000-0002-0203-7769</orcidid><orcidid>https://orcid.org/0000-0002-8634-5039</orcidid><orcidid>https://orcid.org/0000-0002-5504-2684</orcidid></search><sort><creationdate>20230101</creationdate><title>Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles</title><author>Lee, Lindsey A. ; Barrick, Samantha K. ; Meller, Artur ; Walklate, Jonathan ; Lotthammer, Jeffrey M. ; Tay, Jian Wei ; Stump, W. Tom ; Bowman, Gregory ; Geeves, Michael A. ; Greenberg, Michael J. ; Leinwand, Leslie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-aeaba6dd71b964140392092a734486c9513bb318a2f0f92d16d47456dd3ac5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>actin</topic><topic>Animals</topic><topic>cardiac muscle</topic><topic>Cardiac Myosins - genetics</topic><topic>Cardiac Myosins - metabolism</topic><topic>Humans</topic><topic>interacting heads motif</topic><topic>kinetics</topic><topic>Mammals - metabolism</topic><topic>molecular motor</topic><topic>Muscle, Skeletal - metabolism</topic><topic>myosin</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>skeletal muscle</topic><topic>structure–function</topic><topic>super-relaxed state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Lindsey A.</creatorcontrib><creatorcontrib>Barrick, Samantha K.</creatorcontrib><creatorcontrib>Meller, Artur</creatorcontrib><creatorcontrib>Walklate, Jonathan</creatorcontrib><creatorcontrib>Lotthammer, Jeffrey M.</creatorcontrib><creatorcontrib>Tay, Jian Wei</creatorcontrib><creatorcontrib>Stump, W. Tom</creatorcontrib><creatorcontrib>Bowman, Gregory</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><creatorcontrib>Greenberg, Michael J.</creatorcontrib><creatorcontrib>Leinwand, Leslie A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Lindsey A.</au><au>Barrick, Samantha K.</au><au>Meller, Artur</au><au>Walklate, Jonathan</au><au>Lotthammer, Jeffrey M.</au><au>Tay, Jian Wei</au><au>Stump, W. Tom</au><au>Bowman, Gregory</au><au>Geeves, Michael A.</au><au>Greenberg, Michael J.</au><au>Leinwand, Leslie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>299</volume><issue>1</issue><spage>102657</spage><epage>102657</epage><pages>102657-102657</pages><artnum>102657</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac β-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac β-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36334627</pmid><doi>10.1016/j.jbc.2022.102657</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5022-7006</orcidid><orcidid>https://orcid.org/0000-0003-1320-3547</orcidid><orcidid>https://orcid.org/0000-0002-0203-7769</orcidid><orcidid>https://orcid.org/0000-0002-8634-5039</orcidid><orcidid>https://orcid.org/0000-0002-5504-2684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-01, Vol.299 (1), p.102657-102657, Article 102657
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9800208
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects actin
Animals
cardiac muscle
Cardiac Myosins - genetics
Cardiac Myosins - metabolism
Humans
interacting heads motif
kinetics
Mammals - metabolism
molecular motor
Muscle, Skeletal - metabolism
myosin
Myosin Heavy Chains - genetics
Myosin Heavy Chains - metabolism
Protein Isoforms - genetics
Protein Isoforms - metabolism
skeletal muscle
structure–function
super-relaxed state
title Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20divergence%20of%20the%20sarcomeric%20myosin,%20MYH7b,%20supports%20species-specific%20biological%20roles&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lee,%20Lindsey%20A.&rft.date=2023-01-01&rft.volume=299&rft.issue=1&rft.spage=102657&rft.epage=102657&rft.pages=102657-102657&rft.artnum=102657&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102657&rft_dat=%3Cproquest_pubme%3E2732534458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732534458&rft_id=info:pmid/36334627&rft_els_id=S0021925822011000&rfr_iscdi=true