Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non‐homologous HolPases tha...
Gespeichert in:
Veröffentlicht in: | Protein science 2023-01, Vol.32 (1), p.e4536-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e4536 |
container_title | Protein science |
container_volume | 32 |
creator | Kinateder, Thomas Drexler, Lukas Straub, Kristina Merkl, Rainer Sterner, Reinhard |
description | The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non‐homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ‐Proteobacteria (HisB‐N). It has been argued that HisB‐N and its closest homologue d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB‐N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB‐N sequences revealed that HisB‐Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ‐ to γ‐Proteobacteria where it evolved to the modern HisB‐N. |
doi_str_mv | 10.1002/pro.4536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9798254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753292611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-f1f81ac7a7f2bd44847933b83f20b5e61d867810d3816744f419e0b8938957523</originalsourceid><addsrcrecordid>eNp1kV9L3TAYh8NQ5pkO9glGwJvdVPOvaXIzkINOQVDGhN2FtE08kTapSeusn96co3NOMDfhffPw8L75AfAFowOMEDkcYjhgJeUfwAIzLgsh-e8tsECS40JQLnbAp5RuEEIME_oR7FBeIkIkWoB0fD-Y6HrjR91B7VvYhH6YRj264Dcd3c3JJRgsHFcm141JY5zXtfbQ3IVu2qC5NYfJX0PjH-beQBtDD1cuja513sDahTT7bMiuPbBtdZfM5-d7F1ydHP9anhbnFz_OlkfnRcOo4IXFVmDdVLqypG4ZE6ySlNaCWoLq0nDcCl4JjFoqMK8YswxLg2ohqZBlVRK6C74_eYep7k3b5B2j7tSQ183jqqCd-v_Fu5W6DndKVlKQkmXBt2dBDLdT3lv1LjWm67Q3YUqKVCUlknCMM7r_Br0JU8yft6EkYTyff8ImhpSisS_DYKTWSeY6qHWSGf36evgX8G90GSiegD-uM_O7InX582IjfASxYqoO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759246666</pqid></control><display><type>article</type><title>Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kinateder, Thomas ; Drexler, Lukas ; Straub, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creator><creatorcontrib>Kinateder, Thomas ; Drexler, Lukas ; Straub, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creatorcontrib><description>The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non‐homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ‐Proteobacteria (HisB‐N). It has been argued that HisB‐N and its closest homologue d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB‐N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB‐N sequences revealed that HisB‐Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ‐ to γ‐Proteobacteria where it evolved to the modern HisB‐N.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4536</identifier><identifier>PMID: 36502290</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>AlphaFold ; ancestral sequence reconstruction ; Archaea ; Biosynthesis ; Computer applications ; Divergence ; d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase ; E coli ; Electrostatic properties ; Electrostatics ; enzyme ; enzyme evolution ; Enzymes ; Escherichia coli - genetics ; Eukaryotes ; Evolution ; Full‐length Paper ; Full‐length Papers ; Gene transfer ; GmhB ; Heptose ; HisB‐N ; Histidine ; Histidine - genetics ; Histidine - metabolism ; histidinol phosphate phosphatase ; Histidinol-Phosphatase - chemistry ; Homology ; horizontal gene transfer ; Horizontal transfer ; Phosphatase ; Phosphoric Monoester Hydrolases - chemistry ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Phylogenetics ; Phylogeny ; promiscuity ; Proteobacteria</subject><ispartof>Protein science, 2023-01, Vol.32 (1), p.e4536-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of The Protein Society.</rights><rights>2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-f1f81ac7a7f2bd44847933b83f20b5e61d867810d3816744f419e0b8938957523</citedby><cites>FETCH-LOGICAL-c4386-f1f81ac7a7f2bd44847933b83f20b5e61d867810d3816744f419e0b8938957523</cites><orcidid>0000-0001-8177-8460 ; 0000-0001-5739-044X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798254/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798254/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36502290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinateder, Thomas</creatorcontrib><creatorcontrib>Drexler, Lukas</creatorcontrib><creatorcontrib>Straub, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><title>Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non‐homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ‐Proteobacteria (HisB‐N). It has been argued that HisB‐N and its closest homologue d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB‐N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB‐N sequences revealed that HisB‐Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ‐ to γ‐Proteobacteria where it evolved to the modern HisB‐N.</description><subject>AlphaFold</subject><subject>ancestral sequence reconstruction</subject><subject>Archaea</subject><subject>Biosynthesis</subject><subject>Computer applications</subject><subject>Divergence</subject><subject>d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase</subject><subject>E coli</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>enzyme</subject><subject>enzyme evolution</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Full‐length Paper</subject><subject>Full‐length Papers</subject><subject>Gene transfer</subject><subject>GmhB</subject><subject>Heptose</subject><subject>HisB‐N</subject><subject>Histidine</subject><subject>Histidine - genetics</subject><subject>Histidine - metabolism</subject><subject>histidinol phosphate phosphatase</subject><subject>Histidinol-Phosphatase - chemistry</subject><subject>Homology</subject><subject>horizontal gene transfer</subject><subject>Horizontal transfer</subject><subject>Phosphatase</subject><subject>Phosphoric Monoester Hydrolases - chemistry</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>promiscuity</subject><subject>Proteobacteria</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV9L3TAYh8NQ5pkO9glGwJvdVPOvaXIzkINOQVDGhN2FtE08kTapSeusn96co3NOMDfhffPw8L75AfAFowOMEDkcYjhgJeUfwAIzLgsh-e8tsECS40JQLnbAp5RuEEIME_oR7FBeIkIkWoB0fD-Y6HrjR91B7VvYhH6YRj264Dcd3c3JJRgsHFcm141JY5zXtfbQ3IVu2qC5NYfJX0PjH-beQBtDD1cuja513sDahTT7bMiuPbBtdZfM5-d7F1ydHP9anhbnFz_OlkfnRcOo4IXFVmDdVLqypG4ZE6ySlNaCWoLq0nDcCl4JjFoqMK8YswxLg2ohqZBlVRK6C74_eYep7k3b5B2j7tSQ183jqqCd-v_Fu5W6DndKVlKQkmXBt2dBDLdT3lv1LjWm67Q3YUqKVCUlknCMM7r_Br0JU8yft6EkYTyff8ImhpSisS_DYKTWSeY6qHWSGf36evgX8G90GSiegD-uM_O7InX582IjfASxYqoO</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Kinateder, Thomas</creator><creator>Drexler, Lukas</creator><creator>Straub, Kristina</creator><creator>Merkl, Rainer</creator><creator>Sterner, Reinhard</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8177-8460</orcidid><orcidid>https://orcid.org/0000-0001-5739-044X</orcidid></search><sort><creationdate>202301</creationdate><title>Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis</title><author>Kinateder, Thomas ; Drexler, Lukas ; Straub, Kristina ; Merkl, Rainer ; Sterner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-f1f81ac7a7f2bd44847933b83f20b5e61d867810d3816744f419e0b8938957523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AlphaFold</topic><topic>ancestral sequence reconstruction</topic><topic>Archaea</topic><topic>Biosynthesis</topic><topic>Computer applications</topic><topic>Divergence</topic><topic>d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase</topic><topic>E coli</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>enzyme</topic><topic>enzyme evolution</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Full‐length Paper</topic><topic>Full‐length Papers</topic><topic>Gene transfer</topic><topic>GmhB</topic><topic>Heptose</topic><topic>HisB‐N</topic><topic>Histidine</topic><topic>Histidine - genetics</topic><topic>Histidine - metabolism</topic><topic>histidinol phosphate phosphatase</topic><topic>Histidinol-Phosphatase - chemistry</topic><topic>Homology</topic><topic>horizontal gene transfer</topic><topic>Horizontal transfer</topic><topic>Phosphatase</topic><topic>Phosphoric Monoester Hydrolases - chemistry</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>promiscuity</topic><topic>Proteobacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinateder, Thomas</creatorcontrib><creatorcontrib>Drexler, Lukas</creatorcontrib><creatorcontrib>Straub, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinateder, Thomas</au><au>Drexler, Lukas</au><au>Straub, Kristina</au><au>Merkl, Rainer</au><au>Sterner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2023-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>e4536</spage><epage>n/a</epage><pages>e4536-n/a</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non‐homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ‐Proteobacteria (HisB‐N). It has been argued that HisB‐N and its closest homologue d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB‐N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB‐N sequences revealed that HisB‐Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ‐ to γ‐Proteobacteria where it evolved to the modern HisB‐N.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36502290</pmid><doi>10.1002/pro.4536</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8177-8460</orcidid><orcidid>https://orcid.org/0000-0001-5739-044X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2023-01, Vol.32 (1), p.e4536-n/a |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9798254 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | AlphaFold ancestral sequence reconstruction Archaea Biosynthesis Computer applications Divergence d‐glycero‐d‐manno‐heptose‐1,7‐bisphosphate 7‐phosphatase E coli Electrostatic properties Electrostatics enzyme enzyme evolution Enzymes Escherichia coli - genetics Eukaryotes Evolution Full‐length Paper Full‐length Papers Gene transfer GmhB Heptose HisB‐N Histidine Histidine - genetics Histidine - metabolism histidinol phosphate phosphatase Histidinol-Phosphatase - chemistry Homology horizontal gene transfer Horizontal transfer Phosphatase Phosphoric Monoester Hydrolases - chemistry Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Phylogenetics Phylogeny promiscuity Proteobacteria |
title | Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20analysis%20of%20the%20ancestry%20of%20an%20evolutionary%20young%20enzyme%20from%20histidine%20biosynthesis&rft.jtitle=Protein%20science&rft.au=Kinateder,%20Thomas&rft.date=2023-01&rft.volume=32&rft.issue=1&rft.spage=e4536&rft.epage=n/a&rft.pages=e4536-n/a&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4536&rft_dat=%3Cproquest_pubme%3E2753292611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759246666&rft_id=info:pmid/36502290&rfr_iscdi=true |