“Clickable” Organic Electrochemical Transistors

Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS Au 2022-12, Vol.2 (12), p.2778-2790
Hauptverfasser: Fenoy, Gonzalo E., Hasler, Roger, Quartinello, Felice, Marmisollé, Waldemar A., Lorenz, Christoph, Azzaroni, Omar, Bäuerle, Peter, Knoll, Wolfgang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2790
container_issue 12
container_start_page 2778
container_title JACS Au
container_volume 2
creator Fenoy, Gonzalo E.
Hasler, Roger
Quartinello, Felice
Marmisollé, Waldemar A.
Lorenz, Christoph
Azzaroni, Omar
Bäuerle, Peter
Knoll, Wolfgang
description Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin–biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
doi_str_mv 10.1021/jacsau.2c00515
format Article
fullrecord <record><control><sourceid>proquest_N~.</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9795466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760168623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-8b718d317b7b1f68a9ed0d6e6456f6d62030e991820da8d17f77173f8b42fbea3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRbKm9epQeRUid3U12k4sgpf6BQi_1vGw2m3brJqm7ieCtD6Iv1ycxklrqwdMMzDe_GT6ELjGMMRB8u5bKy2ZMFECEoxPUJyzBAeUQnh71PTT0fg0AJMIUGJyjHmVRAoTTPqK77efEGvUqU6t326_R3C1ladRoarWqXaVWujBK2tHCydIbX1fOX6CzXFqvh_s6QC8P08XkKZjNH58n97NAhiSqgzjlOM4o5ilPcc5imegMMqZZGLGcZYwABZ0kOCaQyTjDPOccc5rHaUjyVEs6QHdd7qZJC50pXdZOWrFxppDuQ1TSiL-T0qzEsnoXCU-ikLE24Hof4Kq3RvtaFMYrba0sddV4QTgDzGJGaIuOO1S5ynun88MZDOJHtuhki73sduHq-LkD_qu2BW46oN0T66pxZevqv7RvieeLrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760168623</pqid></control><display><type>article</type><title>“Clickable” Organic Electrochemical Transistors</title><source>American Chemical Society (ACS) Open Access</source><creator>Fenoy, Gonzalo E. ; Hasler, Roger ; Quartinello, Felice ; Marmisollé, Waldemar A. ; Lorenz, Christoph ; Azzaroni, Omar ; Bäuerle, Peter ; Knoll, Wolfgang</creator><creatorcontrib>Fenoy, Gonzalo E. ; Hasler, Roger ; Quartinello, Felice ; Marmisollé, Waldemar A. ; Lorenz, Christoph ; Azzaroni, Omar ; Bäuerle, Peter ; Knoll, Wolfgang</creatorcontrib><description>Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin–biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.</description><identifier>ISSN: 2691-3704</identifier><identifier>EISSN: 2691-3704</identifier><identifier>DOI: 10.1021/jacsau.2c00515</identifier><identifier>PMID: 36590273</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>JACS Au, 2022-12, Vol.2 (12), p.2778-2790</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-8b718d317b7b1f68a9ed0d6e6456f6d62030e991820da8d17f77173f8b42fbea3</citedby><cites>FETCH-LOGICAL-a425t-8b718d317b7b1f68a9ed0d6e6456f6d62030e991820da8d17f77173f8b42fbea3</cites><orcidid>0000-0002-5098-0612 ; 0000-0003-1543-4090 ; 0000-0003-2017-4414 ; 0000-0003-4336-4843 ; 0000-0002-0883-3053 ; 0000-0003-0031-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacsau.2c00515$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacsau.2c00515$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27057,27901,27902,53766,53768,56737,56787</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1021/jacsau.2c00515$$EView_record_in_American_Chemical_Society$$FView_record_in_$$GAmerican_Chemical_Society</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36590273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Quartinello, Felice</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Lorenz, Christoph</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><creatorcontrib>Bäuerle, Peter</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><title>“Clickable” Organic Electrochemical Transistors</title><title>JACS Au</title><addtitle>JACS Au</addtitle><description>Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin–biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.</description><issn>2691-3704</issn><issn>2691-3704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQhxdRbKm9epQeRUid3U12k4sgpf6BQi_1vGw2m3brJqm7ieCtD6Iv1ycxklrqwdMMzDe_GT6ELjGMMRB8u5bKy2ZMFECEoxPUJyzBAeUQnh71PTT0fg0AJMIUGJyjHmVRAoTTPqK77efEGvUqU6t326_R3C1ladRoarWqXaVWujBK2tHCydIbX1fOX6CzXFqvh_s6QC8P08XkKZjNH58n97NAhiSqgzjlOM4o5ilPcc5imegMMqZZGLGcZYwABZ0kOCaQyTjDPOccc5rHaUjyVEs6QHdd7qZJC50pXdZOWrFxppDuQ1TSiL-T0qzEsnoXCU-ikLE24Hof4Kq3RvtaFMYrba0sddV4QTgDzGJGaIuOO1S5ynun88MZDOJHtuhki73sduHq-LkD_qu2BW46oN0T66pxZevqv7RvieeLrg</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>Fenoy, Gonzalo E.</creator><creator>Hasler, Roger</creator><creator>Quartinello, Felice</creator><creator>Marmisollé, Waldemar A.</creator><creator>Lorenz, Christoph</creator><creator>Azzaroni, Omar</creator><creator>Bäuerle, Peter</creator><creator>Knoll, Wolfgang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid><orcidid>https://orcid.org/0000-0003-2017-4414</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0002-0883-3053</orcidid><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid></search><sort><creationdate>20221226</creationdate><title>“Clickable” Organic Electrochemical Transistors</title><author>Fenoy, Gonzalo E. ; Hasler, Roger ; Quartinello, Felice ; Marmisollé, Waldemar A. ; Lorenz, Christoph ; Azzaroni, Omar ; Bäuerle, Peter ; Knoll, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-8b718d317b7b1f68a9ed0d6e6456f6d62030e991820da8d17f77173f8b42fbea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Hasler, Roger</creatorcontrib><creatorcontrib>Quartinello, Felice</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Lorenz, Christoph</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><creatorcontrib>Bäuerle, Peter</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JACS Au</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fenoy, Gonzalo E.</au><au>Hasler, Roger</au><au>Quartinello, Felice</au><au>Marmisollé, Waldemar A.</au><au>Lorenz, Christoph</au><au>Azzaroni, Omar</au><au>Bäuerle, Peter</au><au>Knoll, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Clickable” Organic Electrochemical Transistors</atitle><jtitle>JACS Au</jtitle><addtitle>JACS Au</addtitle><date>2022-12-26</date><risdate>2022</risdate><volume>2</volume><issue>12</issue><spage>2778</spage><epage>2790</epage><pages>2778-2790</pages><issn>2691-3704</issn><eissn>2691-3704</eissn><abstract>Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin–biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36590273</pmid><doi>10.1021/jacsau.2c00515</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid><orcidid>https://orcid.org/0000-0003-2017-4414</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0002-0883-3053</orcidid><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2691-3704
ispartof JACS Au, 2022-12, Vol.2 (12), p.2778-2790
issn 2691-3704
2691-3704
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9795466
source American Chemical Society (ACS) Open Access
title “Clickable” Organic Electrochemical Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_N~.&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CClickable%E2%80%9D%20Organic%20Electrochemical%20Transistors&rft.jtitle=JACS%20Au&rft.au=Fenoy,%20Gonzalo%20E.&rft.date=2022-12-26&rft.volume=2&rft.issue=12&rft.spage=2778&rft.epage=2790&rft.pages=2778-2790&rft.issn=2691-3704&rft.eissn=2691-3704&rft_id=info:doi/10.1021/jacsau.2c00515&rft_dat=%3Cproquest_N~.%3E2760168623%3C/proquest_N~.%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760168623&rft_id=info:pmid/36590273&rfr_iscdi=true