Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-12, Vol.23 (24), p.16190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 16190 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Cojocaru, Florina-Daniela Balan, Vera Verestiuc, Liliana |
description | The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation. |
doi_str_mv | 10.3390/ijms232416190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9788029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756738193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-28653c087f964244f11d2493613c77f0588750415addaa67824dd4056507940d3</originalsourceid><addsrcrecordid>eNpd0clLxDAUBvAgijOOHr1KwYuXavbloOCuMCK4nEPMoh3aZkxawf_eDqPieHqB9-Mjjw-AXQQPCVHwqJo1GRNMEUcKroExohiXEHKx_uc9Als5zyAcIFObYEQ4Y0xiMQbHp-7DtNa7glwUd-a19V1li0drQoi1y0WIqXjqm5jKB1-bbnBnsfXFhQ_ednkbbARTZ7_zPSfg-ery6fymnN5f356fTktLEetKLDkjFkoRFKeY0oCQw1QRjogVIkAmpWBwoMY5Y7iQmDpHIeMMCkWhIxNwssyd9y-Nd9a3XTK1nqeqMelTR1Pp1U1bvenX-KGVkBJiNQQcfAek-N773OmmytbXtWl97LPGgkkEBVd8oPv_6Cz2qR3OWyguiESKDKpcKptizsmH388gqBfF6JViBr_394Jf_dME-QKhoYZl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756738193</pqid></control><display><type>article</type><title>Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cojocaru, Florina-Daniela ; Balan, Vera ; Verestiuc, Liliana</creator><creatorcontrib>Cojocaru, Florina-Daniela ; Balan, Vera ; Verestiuc, Liliana</creatorcontrib><description>The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232416190</identifier><identifier>PMID: 36555827</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging ; Biomedical materials ; Bone biomaterials ; Bone cancer ; Bone composition ; Bone diseases ; Bone growth ; Bone marrow ; Bone Neoplasms - therapy ; Bone Regeneration ; Bone Substitutes ; Bone tumors ; Cancer therapies ; Cytokines ; Extracellular matrix ; Growth factors ; Hormones ; Humans ; Hydroxyapatite ; Hyperthermia ; Immunotherapy ; Insulin-like growth factors ; Magnetic Phenomena ; Metastasis ; Nanoparticles ; Osteoblastogenesis ; Osteogenesis ; Polymers ; Printing, Three-Dimensional ; Proteins ; Regeneration ; Regeneration (physiology) ; Review ; Scaffolds ; Substitute bone ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Trauma ; Tumor Microenvironment ; Tumors</subject><ispartof>International journal of molecular sciences, 2022-12, Vol.23 (24), p.16190</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-28653c087f964244f11d2493613c77f0588750415addaa67824dd4056507940d3</citedby><cites>FETCH-LOGICAL-c415t-28653c087f964244f11d2493613c77f0588750415addaa67824dd4056507940d3</cites><orcidid>0000-0002-5255-7586 ; 0000-0002-3098-8406 ; 0000-0002-8076-6414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788029/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36555827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cojocaru, Florina-Daniela</creatorcontrib><creatorcontrib>Balan, Vera</creatorcontrib><creatorcontrib>Verestiuc, Liliana</creatorcontrib><title>Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.</description><subject>Aging</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone cancer</subject><subject>Bone composition</subject><subject>Bone diseases</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Neoplasms - therapy</subject><subject>Bone Regeneration</subject><subject>Bone Substitutes</subject><subject>Bone tumors</subject><subject>Cancer therapies</subject><subject>Cytokines</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hydroxyapatite</subject><subject>Hyperthermia</subject><subject>Immunotherapy</subject><subject>Insulin-like growth factors</subject><subject>Magnetic Phenomena</subject><subject>Metastasis</subject><subject>Nanoparticles</subject><subject>Osteoblastogenesis</subject><subject>Osteogenesis</subject><subject>Polymers</subject><subject>Printing, Three-Dimensional</subject><subject>Proteins</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Review</subject><subject>Scaffolds</subject><subject>Substitute bone</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Trauma</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0clLxDAUBvAgijOOHr1KwYuXavbloOCuMCK4nEPMoh3aZkxawf_eDqPieHqB9-Mjjw-AXQQPCVHwqJo1GRNMEUcKroExohiXEHKx_uc9Als5zyAcIFObYEQ4Y0xiMQbHp-7DtNa7glwUd-a19V1li0drQoi1y0WIqXjqm5jKB1-bbnBnsfXFhQ_ednkbbARTZ7_zPSfg-ery6fymnN5f356fTktLEetKLDkjFkoRFKeY0oCQw1QRjogVIkAmpWBwoMY5Y7iQmDpHIeMMCkWhIxNwssyd9y-Nd9a3XTK1nqeqMelTR1Pp1U1bvenX-KGVkBJiNQQcfAek-N773OmmytbXtWl97LPGgkkEBVd8oPv_6Cz2qR3OWyguiESKDKpcKptizsmH388gqBfF6JViBr_394Jf_dME-QKhoYZl</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Cojocaru, Florina-Daniela</creator><creator>Balan, Vera</creator><creator>Verestiuc, Liliana</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5255-7586</orcidid><orcidid>https://orcid.org/0000-0002-3098-8406</orcidid><orcidid>https://orcid.org/0000-0002-8076-6414</orcidid></search><sort><creationdate>20221219</creationdate><title>Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects</title><author>Cojocaru, Florina-Daniela ; Balan, Vera ; Verestiuc, Liliana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-28653c087f964244f11d2493613c77f0588750415addaa67824dd4056507940d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone cancer</topic><topic>Bone composition</topic><topic>Bone diseases</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Neoplasms - therapy</topic><topic>Bone Regeneration</topic><topic>Bone Substitutes</topic><topic>Bone tumors</topic><topic>Cancer therapies</topic><topic>Cytokines</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hydroxyapatite</topic><topic>Hyperthermia</topic><topic>Immunotherapy</topic><topic>Insulin-like growth factors</topic><topic>Magnetic Phenomena</topic><topic>Metastasis</topic><topic>Nanoparticles</topic><topic>Osteoblastogenesis</topic><topic>Osteogenesis</topic><topic>Polymers</topic><topic>Printing, Three-Dimensional</topic><topic>Proteins</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Review</topic><topic>Scaffolds</topic><topic>Substitute bone</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Trauma</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cojocaru, Florina-Daniela</creatorcontrib><creatorcontrib>Balan, Vera</creatorcontrib><creatorcontrib>Verestiuc, Liliana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cojocaru, Florina-Daniela</au><au>Balan, Vera</au><au>Verestiuc, Liliana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-12-19</date><risdate>2022</risdate><volume>23</volume><issue>24</issue><spage>16190</spage><pages>16190-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36555827</pmid><doi>10.3390/ijms232416190</doi><orcidid>https://orcid.org/0000-0002-5255-7586</orcidid><orcidid>https://orcid.org/0000-0002-3098-8406</orcidid><orcidid>https://orcid.org/0000-0002-8076-6414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-12, Vol.23 (24), p.16190 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9788029 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Aging Biomedical materials Bone biomaterials Bone cancer Bone composition Bone diseases Bone growth Bone marrow Bone Neoplasms - therapy Bone Regeneration Bone Substitutes Bone tumors Cancer therapies Cytokines Extracellular matrix Growth factors Hormones Humans Hydroxyapatite Hyperthermia Immunotherapy Insulin-like growth factors Magnetic Phenomena Metastasis Nanoparticles Osteoblastogenesis Osteogenesis Polymers Printing, Three-Dimensional Proteins Regeneration Regeneration (physiology) Review Scaffolds Substitute bone Tissue engineering Tissue Engineering - methods Tissue Scaffolds Trauma Tumor Microenvironment Tumors |
title | Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%203D%20Magnetic%20Scaffolds%20for%20Tumor-Related%20Bone%20Defects&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Cojocaru,%20Florina-Daniela&rft.date=2022-12-19&rft.volume=23&rft.issue=24&rft.spage=16190&rft.pages=16190-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232416190&rft_dat=%3Cproquest_pubme%3E2756738193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756738193&rft_id=info:pmid/36555827&rfr_iscdi=true |