Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses
In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor s...
Gespeichert in:
Veröffentlicht in: | Materials 2022-12, Vol.15 (24), p.8858 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 8858 |
container_title | Materials |
container_volume | 15 |
creator | Mahata, Chandreswar Pyo, Juyeong Jeon, Beomki Ismail, Muhammad Kang, Myounggon Kim, Sungjun |
description | In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor shows uniform switching characteristics, low switching voltages, and a high RON/ROFF ratio (~102). The transition from short-term plasticity (STP) to long-term potentiation (LTP) can be observed by increasing the pulse amplitude and number. Spike-rate-dependent plasticity (SRDP) and paired-pulse facilitation (PPF) learning processes were successfully emulated by sequential pulse trains. By reducing the pulse interval, the synaptic weight change increases due to the residual oxygen vacancy near the conductive filaments (CFs). This work explores mimicking the biological synaptic behavior and further development for next-generation neuromorphic applications. |
doi_str_mv | 10.3390/ma15248858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758107991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-10668965457359f73a4a1c1fb1ac2ef514a0baab18d3f172fb1ad9cf20ffbd703</originalsourceid><addsrcrecordid>eNpdkUtrHDEQhEVIiI3jS36BIJcQmFiP0esSMGY3Dhj24DU-ih6ttNYyI22kGcf-95mNTRK7L91QH0VThdBHSr5ybsjZAFSwVmuh36BjaoxsqGnbt__dR-i01h2Zh3OqmXmPjrgUQkrJjlG3zGWIadssi_d4PSXoeo_PE_R5i69_xdHdzSqOCd-uHs7WsHrAl370Je-m5MaYEw654MUw9TAewEXv3Vhyig5fPybYV18_oHcB-upPn_cJulku1heXzdXq-4-L86vGcc3HhhIptZGiFYoLExSHFqijoaPgmA-CtkA6gI7qDQ9UsYOwMS4wEkK3UYSfoG9PvvupG_zG-TQW6O2-xAHKo80Q7UslxTu7zffWKK1kK2aDz88GJf-cfB3tEKvzfQ_J56lapoSmRBlDZ_TTK3SXpzKn9oeSSrWMHagvT5Qrudbiw99nKLGH9uy_9vhvG3WMMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756774221</pqid></control><display><type>article</type><title>Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mahata, Chandreswar ; Pyo, Juyeong ; Jeon, Beomki ; Ismail, Muhammad ; Kang, Myounggon ; Kim, Sungjun</creator><creatorcontrib>Mahata, Chandreswar ; Pyo, Juyeong ; Jeon, Beomki ; Ismail, Muhammad ; Kang, Myounggon ; Kim, Sungjun</creatorcontrib><description>In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor shows uniform switching characteristics, low switching voltages, and a high RON/ROFF ratio (~102). The transition from short-term plasticity (STP) to long-term potentiation (LTP) can be observed by increasing the pulse amplitude and number. Spike-rate-dependent plasticity (SRDP) and paired-pulse facilitation (PPF) learning processes were successfully emulated by sequential pulse trains. By reducing the pulse interval, the synaptic weight change increases due to the residual oxygen vacancy near the conductive filaments (CFs). This work explores mimicking the biological synaptic behavior and further development for next-generation neuromorphic applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15248858</identifier><identifier>PMID: 36556662</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Electric fields ; Electrodes ; Electroforming ; Filaments ; Heterojunctions ; Memory devices ; Memristors ; Metal oxides ; Plastic properties ; Pulse amplitude ; Random access memory ; Switching ; Synapses</subject><ispartof>Materials, 2022-12, Vol.15 (24), p.8858</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-10668965457359f73a4a1c1fb1ac2ef514a0baab18d3f172fb1ad9cf20ffbd703</citedby><cites>FETCH-LOGICAL-c383t-10668965457359f73a4a1c1fb1ac2ef514a0baab18d3f172fb1ad9cf20ffbd703</cites><orcidid>0000-0002-8880-8164 ; 0000-0003-4132-0038 ; 0000-0001-5443-6561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787645/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787645/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids></links><search><creatorcontrib>Mahata, Chandreswar</creatorcontrib><creatorcontrib>Pyo, Juyeong</creatorcontrib><creatorcontrib>Jeon, Beomki</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Kang, Myounggon</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><title>Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses</title><title>Materials</title><description>In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor shows uniform switching characteristics, low switching voltages, and a high RON/ROFF ratio (~102). The transition from short-term plasticity (STP) to long-term potentiation (LTP) can be observed by increasing the pulse amplitude and number. Spike-rate-dependent plasticity (SRDP) and paired-pulse facilitation (PPF) learning processes were successfully emulated by sequential pulse trains. By reducing the pulse interval, the synaptic weight change increases due to the residual oxygen vacancy near the conductive filaments (CFs). This work explores mimicking the biological synaptic behavior and further development for next-generation neuromorphic applications.</description><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electroforming</subject><subject>Filaments</subject><subject>Heterojunctions</subject><subject>Memory devices</subject><subject>Memristors</subject><subject>Metal oxides</subject><subject>Plastic properties</subject><subject>Pulse amplitude</subject><subject>Random access memory</subject><subject>Switching</subject><subject>Synapses</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtrHDEQhEVIiI3jS36BIJcQmFiP0esSMGY3Dhj24DU-ih6ttNYyI22kGcf-95mNTRK7L91QH0VThdBHSr5ybsjZAFSwVmuh36BjaoxsqGnbt__dR-i01h2Zh3OqmXmPjrgUQkrJjlG3zGWIadssi_d4PSXoeo_PE_R5i69_xdHdzSqOCd-uHs7WsHrAl370Je-m5MaYEw654MUw9TAewEXv3Vhyig5fPybYV18_oHcB-upPn_cJulku1heXzdXq-4-L86vGcc3HhhIptZGiFYoLExSHFqijoaPgmA-CtkA6gI7qDQ9UsYOwMS4wEkK3UYSfoG9PvvupG_zG-TQW6O2-xAHKo80Q7UslxTu7zffWKK1kK2aDz88GJf-cfB3tEKvzfQ_J56lapoSmRBlDZ_TTK3SXpzKn9oeSSrWMHagvT5Qrudbiw99nKLGH9uy_9vhvG3WMMg</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Mahata, Chandreswar</creator><creator>Pyo, Juyeong</creator><creator>Jeon, Beomki</creator><creator>Ismail, Muhammad</creator><creator>Kang, Myounggon</creator><creator>Kim, Sungjun</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8880-8164</orcidid><orcidid>https://orcid.org/0000-0003-4132-0038</orcidid><orcidid>https://orcid.org/0000-0001-5443-6561</orcidid></search><sort><creationdate>20221212</creationdate><title>Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses</title><author>Mahata, Chandreswar ; Pyo, Juyeong ; Jeon, Beomki ; Ismail, Muhammad ; Kang, Myounggon ; Kim, Sungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-10668965457359f73a4a1c1fb1ac2ef514a0baab18d3f172fb1ad9cf20ffbd703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electroforming</topic><topic>Filaments</topic><topic>Heterojunctions</topic><topic>Memory devices</topic><topic>Memristors</topic><topic>Metal oxides</topic><topic>Plastic properties</topic><topic>Pulse amplitude</topic><topic>Random access memory</topic><topic>Switching</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahata, Chandreswar</creatorcontrib><creatorcontrib>Pyo, Juyeong</creatorcontrib><creatorcontrib>Jeon, Beomki</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Kang, Myounggon</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahata, Chandreswar</au><au>Pyo, Juyeong</au><au>Jeon, Beomki</au><au>Ismail, Muhammad</au><au>Kang, Myounggon</au><au>Kim, Sungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses</atitle><jtitle>Materials</jtitle><date>2022-12-12</date><risdate>2022</risdate><volume>15</volume><issue>24</issue><spage>8858</spage><pages>8858-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this work, the sputtered deposited WOx/TaOx switching layer has been studied for resistive random-access memory (RRAM) devices. Gradual SET and RESET behaviors with reliable device-to-device variability were obtained with DC voltage sweep cycling without an electroforming process. The memristor shows uniform switching characteristics, low switching voltages, and a high RON/ROFF ratio (~102). The transition from short-term plasticity (STP) to long-term potentiation (LTP) can be observed by increasing the pulse amplitude and number. Spike-rate-dependent plasticity (SRDP) and paired-pulse facilitation (PPF) learning processes were successfully emulated by sequential pulse trains. By reducing the pulse interval, the synaptic weight change increases due to the residual oxygen vacancy near the conductive filaments (CFs). This work explores mimicking the biological synaptic behavior and further development for next-generation neuromorphic applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36556662</pmid><doi>10.3390/ma15248858</doi><orcidid>https://orcid.org/0000-0002-8880-8164</orcidid><orcidid>https://orcid.org/0000-0003-4132-0038</orcidid><orcidid>https://orcid.org/0000-0001-5443-6561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-12, Vol.15 (24), p.8858 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787645 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Electric fields Electrodes Electroforming Filaments Heterojunctions Memory devices Memristors Metal oxides Plastic properties Pulse amplitude Random access memory Switching Synapses |
title | Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forming-Free%20Tunable%20Analog%20Switching%20in%20WOx/TaOx%20Heterojunction%20for%20Emulating%20Electronic%20Synapses&rft.jtitle=Materials&rft.au=Mahata,%20Chandreswar&rft.date=2022-12-12&rft.volume=15&rft.issue=24&rft.spage=8858&rft.pages=8858-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15248858&rft_dat=%3Cproquest_pubme%3E2758107991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756774221&rft_id=info:pmid/36556662&rfr_iscdi=true |