Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota
Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either...
Gespeichert in:
Veröffentlicht in: | Molecular nutrition & food research 2022-11, Vol.66 (22), p.e2100819-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e2100819 |
container_title | Molecular nutrition & food research |
container_volume | 66 |
creator | Mitchelson, Kathleen A. J. Tran, Tam T. T. Dillon, Eugene T. Vlckova, Klara Harrison, Sabine M. Ntemiri, Alexandra Cunningham, Katie Gibson, Irene Finucane, Francis M. O'Connor, Eibhlís M. Roche, Helen M. O'Toole, Paul W. |
description | Scope
Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge.
Methods and results
Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation.
Conclusions
Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy. |
doi_str_mv | 10.1002/mnfr.202100819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738282504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNERX9gyxJZYsNmpv5LYm-QUKEzI820EpQFK8txbqirxAm2M9V0xY4tz8KD8BA8ST2aMgI2rHyt-92je-7JsucETwnG9LRzjZ9STNNHEPkoOyIFYRNOGHu8r2l-mB2HcIMxI5SzJ9khKzATOS2Osm-fQIeIfv749fX7rB2NdmjRDb5fQ0ALF8bWOvQBXLDRrm3cIO1qNIdBR2vQ0g62RiuIuupbGzqU2JU1gOZjp529gxrd2niNLisIgK42AyCK3lpdwXZ6NsYt7fvK9lE_zQ4a3QZ49vCeZB_P312dzSfLy9ni7M1yYnjB5ETTPK9q0xSNwKA5yEpiUpNS5rwQvKqlZAbnhgtiBCU1lFI0TeoXwmhaCs1Ostc73WGsOqgNuOh1qwZvO-03qtdW_d1x9lp97tdKlqLMsUwCrx4EfP9lhBBVZ4OBttUO-jEoWmJBc0F5ntCX_6A3_ehdspcoJmjiME_UdEelU4TgodkvQ7DaZqy2Gat9xmngxZ8W9vjvUBPAd8CtbWHzHzm1ujh_z1lydg_YYrWy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738282504</pqid></control><display><type>article</type><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</creator><creatorcontrib>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</creatorcontrib><description>Scope
Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge.
Methods and results
Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation.
Conclusions
Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</description><identifier>ISSN: 1613-4125</identifier><identifier>ISSN: 1613-4133</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.202100819</identifier><identifier>PMID: 36038526</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; beta-Glucans - pharmacology ; Cholesterol ; Colonization ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 ; Diet ; Diet, High-Fat - adverse effects ; Gastrointestinal Microbiome ; Glucan ; Glucans ; gut microbiota ; hepatic triacylglycerol (TAG) ; High fat diet ; Homeostasis ; Insulin ; Insulin Resistance ; Intestinal microflora ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Liver ; Male ; Metabolic response ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Microbiomes ; Microbiota ; Mitochondria ; Modulators ; Obesity ; Obesity - metabolism ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Protein biosynthesis ; Protein synthesis ; Proteomics ; Saccharomyces cerevisiae ; Transplantation ; type 2 diabetes ; Yeast ; yeast β‐glucan ; Yeasts ; β-Glucan</subject><ispartof>Molecular nutrition & food research, 2022-11, Vol.66 (22), p.e2100819-n/a</ispartof><rights>2022 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</citedby><cites>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</cites><orcidid>0000-0002-4558-4527 ; 0000-0002-0628-3318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.202100819$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.202100819$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36038526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchelson, Kathleen A. J.</creatorcontrib><creatorcontrib>Tran, Tam T. T.</creatorcontrib><creatorcontrib>Dillon, Eugene T.</creatorcontrib><creatorcontrib>Vlckova, Klara</creatorcontrib><creatorcontrib>Harrison, Sabine M.</creatorcontrib><creatorcontrib>Ntemiri, Alexandra</creatorcontrib><creatorcontrib>Cunningham, Katie</creatorcontrib><creatorcontrib>Gibson, Irene</creatorcontrib><creatorcontrib>Finucane, Francis M.</creatorcontrib><creatorcontrib>O'Connor, Eibhlís M.</creatorcontrib><creatorcontrib>Roche, Helen M.</creatorcontrib><creatorcontrib>O'Toole, Paul W.</creatorcontrib><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><title>Molecular nutrition & food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope
Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge.
Methods and results
Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation.
Conclusions
Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</description><subject>Animals</subject><subject>beta-Glucans - pharmacology</subject><subject>Cholesterol</subject><subject>Colonization</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Gastrointestinal Microbiome</subject><subject>Glucan</subject><subject>Glucans</subject><subject>gut microbiota</subject><subject>hepatic triacylglycerol (TAG)</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Intestinal microflora</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Liver</subject><subject>Male</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Obese</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Mitochondria</subject><subject>Modulators</subject><subject>Obesity</subject><subject>Obesity - metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteomics</subject><subject>Saccharomyces cerevisiae</subject><subject>Transplantation</subject><subject>type 2 diabetes</subject><subject>Yeast</subject><subject>yeast β‐glucan</subject><subject>Yeasts</subject><subject>β-Glucan</subject><issn>1613-4125</issn><issn>1613-4133</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSNERX9gyxJZYsNmpv5LYm-QUKEzI820EpQFK8txbqirxAm2M9V0xY4tz8KD8BA8ST2aMgI2rHyt-92je-7JsucETwnG9LRzjZ9STNNHEPkoOyIFYRNOGHu8r2l-mB2HcIMxI5SzJ9khKzATOS2Osm-fQIeIfv749fX7rB2NdmjRDb5fQ0ALF8bWOvQBXLDRrm3cIO1qNIdBR2vQ0g62RiuIuupbGzqU2JU1gOZjp529gxrd2niNLisIgK42AyCK3lpdwXZ6NsYt7fvK9lE_zQ4a3QZ49vCeZB_P312dzSfLy9ni7M1yYnjB5ETTPK9q0xSNwKA5yEpiUpNS5rwQvKqlZAbnhgtiBCU1lFI0TeoXwmhaCs1Ostc73WGsOqgNuOh1qwZvO-03qtdW_d1x9lp97tdKlqLMsUwCrx4EfP9lhBBVZ4OBttUO-jEoWmJBc0F5ntCX_6A3_ehdspcoJmjiME_UdEelU4TgodkvQ7DaZqy2Gat9xmngxZ8W9vjvUBPAd8CtbWHzHzm1ujh_z1lydg_YYrWy</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Mitchelson, Kathleen A. J.</creator><creator>Tran, Tam T. T.</creator><creator>Dillon, Eugene T.</creator><creator>Vlckova, Klara</creator><creator>Harrison, Sabine M.</creator><creator>Ntemiri, Alexandra</creator><creator>Cunningham, Katie</creator><creator>Gibson, Irene</creator><creator>Finucane, Francis M.</creator><creator>O'Connor, Eibhlís M.</creator><creator>Roche, Helen M.</creator><creator>O'Toole, Paul W.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4558-4527</orcidid><orcidid>https://orcid.org/0000-0002-0628-3318</orcidid></search><sort><creationdate>202211</creationdate><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><author>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>beta-Glucans - pharmacology</topic><topic>Cholesterol</topic><topic>Colonization</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Gastrointestinal Microbiome</topic><topic>Glucan</topic><topic>Glucans</topic><topic>gut microbiota</topic><topic>hepatic triacylglycerol (TAG)</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Intestinal microflora</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Liver</topic><topic>Male</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Obese</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Mitochondria</topic><topic>Modulators</topic><topic>Obesity</topic><topic>Obesity - metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteomics</topic><topic>Saccharomyces cerevisiae</topic><topic>Transplantation</topic><topic>type 2 diabetes</topic><topic>Yeast</topic><topic>yeast β‐glucan</topic><topic>Yeasts</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchelson, Kathleen A. J.</creatorcontrib><creatorcontrib>Tran, Tam T. T.</creatorcontrib><creatorcontrib>Dillon, Eugene T.</creatorcontrib><creatorcontrib>Vlckova, Klara</creatorcontrib><creatorcontrib>Harrison, Sabine M.</creatorcontrib><creatorcontrib>Ntemiri, Alexandra</creatorcontrib><creatorcontrib>Cunningham, Katie</creatorcontrib><creatorcontrib>Gibson, Irene</creatorcontrib><creatorcontrib>Finucane, Francis M.</creatorcontrib><creatorcontrib>O'Connor, Eibhlís M.</creatorcontrib><creatorcontrib>Roche, Helen M.</creatorcontrib><creatorcontrib>O'Toole, Paul W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular nutrition & food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchelson, Kathleen A. J.</au><au>Tran, Tam T. T.</au><au>Dillon, Eugene T.</au><au>Vlckova, Klara</au><au>Harrison, Sabine M.</au><au>Ntemiri, Alexandra</au><au>Cunningham, Katie</au><au>Gibson, Irene</au><au>Finucane, Francis M.</au><au>O'Connor, Eibhlís M.</au><au>Roche, Helen M.</au><au>O'Toole, Paul W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</atitle><jtitle>Molecular nutrition & food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2022-11</date><risdate>2022</risdate><volume>66</volume><issue>22</issue><spage>e2100819</spage><epage>n/a</epage><pages>e2100819-n/a</pages><issn>1613-4125</issn><issn>1613-4133</issn><eissn>1613-4133</eissn><abstract>Scope
Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge.
Methods and results
Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation.
Conclusions
Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36038526</pmid><doi>10.1002/mnfr.202100819</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4558-4527</orcidid><orcidid>https://orcid.org/0000-0002-0628-3318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4125 |
ispartof | Molecular nutrition & food research, 2022-11, Vol.66 (22), p.e2100819-n/a |
issn | 1613-4125 1613-4133 1613-4133 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787509 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals beta-Glucans - pharmacology Cholesterol Colonization Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 Diet Diet, High-Fat - adverse effects Gastrointestinal Microbiome Glucan Glucans gut microbiota hepatic triacylglycerol (TAG) High fat diet Homeostasis Insulin Insulin Resistance Intestinal microflora Lipid metabolism Lipid Metabolism - genetics Lipids Liver Male Metabolic response Metabolism Mice Mice, Inbred C57BL Mice, Obese Microbiomes Microbiota Mitochondria Modulators Obesity Obesity - metabolism Oxidative phosphorylation Phenotypes Phosphorylation Protein biosynthesis Protein synthesis Proteomics Saccharomyces cerevisiae Transplantation type 2 diabetes Yeast yeast β‐glucan Yeasts β-Glucan |
title | Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20%CE%B2%E2%80%90Glucan%20Improves%20Insulin%20Sensitivity%20and%20Hepatic%20Lipid%20Metabolism%20in%20Mice%20Humanized%20with%20Obese%20Type%202%20Diabetic%20Gut%20Microbiota&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Mitchelson,%20Kathleen%20A.%20J.&rft.date=2022-11&rft.volume=66&rft.issue=22&rft.spage=e2100819&rft.epage=n/a&rft.pages=e2100819-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.202100819&rft_dat=%3Cproquest_pubme%3E2738282504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738282504&rft_id=info:pmid/36038526&rfr_iscdi=true |