Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota

Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2022-11, Vol.66 (22), p.e2100819-n/a
Hauptverfasser: Mitchelson, Kathleen A. J., Tran, Tam T. T., Dillon, Eugene T., Vlckova, Klara, Harrison, Sabine M., Ntemiri, Alexandra, Cunningham, Katie, Gibson, Irene, Finucane, Francis M., O'Connor, Eibhlís M., Roche, Helen M., O'Toole, Paul W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e2100819
container_title Molecular nutrition & food research
container_volume 66
creator Mitchelson, Kathleen A. J.
Tran, Tam T. T.
Dillon, Eugene T.
Vlckova, Klara
Harrison, Sabine M.
Ntemiri, Alexandra
Cunningham, Katie
Gibson, Irene
Finucane, Francis M.
O'Connor, Eibhlís M.
Roche, Helen M.
O'Toole, Paul W.
description Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge. Methods and results Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation. Conclusions Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy. Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.
doi_str_mv 10.1002/mnfr.202100819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738282504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNERX9gyxJZYsNmpv5LYm-QUKEzI820EpQFK8txbqirxAm2M9V0xY4tz8KD8BA8ST2aMgI2rHyt-92je-7JsucETwnG9LRzjZ9STNNHEPkoOyIFYRNOGHu8r2l-mB2HcIMxI5SzJ9khKzATOS2Osm-fQIeIfv749fX7rB2NdmjRDb5fQ0ALF8bWOvQBXLDRrm3cIO1qNIdBR2vQ0g62RiuIuupbGzqU2JU1gOZjp529gxrd2niNLisIgK42AyCK3lpdwXZ6NsYt7fvK9lE_zQ4a3QZ49vCeZB_P312dzSfLy9ni7M1yYnjB5ETTPK9q0xSNwKA5yEpiUpNS5rwQvKqlZAbnhgtiBCU1lFI0TeoXwmhaCs1Ostc73WGsOqgNuOh1qwZvO-03qtdW_d1x9lp97tdKlqLMsUwCrx4EfP9lhBBVZ4OBttUO-jEoWmJBc0F5ntCX_6A3_ehdspcoJmjiME_UdEelU4TgodkvQ7DaZqy2Gat9xmngxZ8W9vjvUBPAd8CtbWHzHzm1ujh_z1lydg_YYrWy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738282504</pqid></control><display><type>article</type><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</creator><creatorcontrib>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</creatorcontrib><description>Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge. Methods and results Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation. Conclusions Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy. Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</description><identifier>ISSN: 1613-4125</identifier><identifier>ISSN: 1613-4133</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.202100819</identifier><identifier>PMID: 36038526</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; beta-Glucans - pharmacology ; Cholesterol ; Colonization ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 ; Diet ; Diet, High-Fat - adverse effects ; Gastrointestinal Microbiome ; Glucan ; Glucans ; gut microbiota ; hepatic triacylglycerol (TAG) ; High fat diet ; Homeostasis ; Insulin ; Insulin Resistance ; Intestinal microflora ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Liver ; Male ; Metabolic response ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Microbiomes ; Microbiota ; Mitochondria ; Modulators ; Obesity ; Obesity - metabolism ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Protein biosynthesis ; Protein synthesis ; Proteomics ; Saccharomyces cerevisiae ; Transplantation ; type 2 diabetes ; Yeast ; yeast β‐glucan ; Yeasts ; β-Glucan</subject><ispartof>Molecular nutrition &amp; food research, 2022-11, Vol.66 (22), p.e2100819-n/a</ispartof><rights>2022 The Authors. Molecular Nutrition &amp; Food Research published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Molecular Nutrition &amp; Food Research published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</citedby><cites>FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</cites><orcidid>0000-0002-4558-4527 ; 0000-0002-0628-3318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.202100819$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.202100819$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36038526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchelson, Kathleen A. J.</creatorcontrib><creatorcontrib>Tran, Tam T. T.</creatorcontrib><creatorcontrib>Dillon, Eugene T.</creatorcontrib><creatorcontrib>Vlckova, Klara</creatorcontrib><creatorcontrib>Harrison, Sabine M.</creatorcontrib><creatorcontrib>Ntemiri, Alexandra</creatorcontrib><creatorcontrib>Cunningham, Katie</creatorcontrib><creatorcontrib>Gibson, Irene</creatorcontrib><creatorcontrib>Finucane, Francis M.</creatorcontrib><creatorcontrib>O'Connor, Eibhlís M.</creatorcontrib><creatorcontrib>Roche, Helen M.</creatorcontrib><creatorcontrib>O'Toole, Paul W.</creatorcontrib><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol Nutr Food Res</addtitle><description>Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge. Methods and results Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation. Conclusions Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy. Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</description><subject>Animals</subject><subject>beta-Glucans - pharmacology</subject><subject>Cholesterol</subject><subject>Colonization</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Gastrointestinal Microbiome</subject><subject>Glucan</subject><subject>Glucans</subject><subject>gut microbiota</subject><subject>hepatic triacylglycerol (TAG)</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Intestinal microflora</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Liver</subject><subject>Male</subject><subject>Metabolic response</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Obese</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Mitochondria</subject><subject>Modulators</subject><subject>Obesity</subject><subject>Obesity - metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteomics</subject><subject>Saccharomyces cerevisiae</subject><subject>Transplantation</subject><subject>type 2 diabetes</subject><subject>Yeast</subject><subject>yeast β‐glucan</subject><subject>Yeasts</subject><subject>β-Glucan</subject><issn>1613-4125</issn><issn>1613-4133</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSNERX9gyxJZYsNmpv5LYm-QUKEzI820EpQFK8txbqirxAm2M9V0xY4tz8KD8BA8ST2aMgI2rHyt-92je-7JsucETwnG9LRzjZ9STNNHEPkoOyIFYRNOGHu8r2l-mB2HcIMxI5SzJ9khKzATOS2Osm-fQIeIfv749fX7rB2NdmjRDb5fQ0ALF8bWOvQBXLDRrm3cIO1qNIdBR2vQ0g62RiuIuupbGzqU2JU1gOZjp529gxrd2niNLisIgK42AyCK3lpdwXZ6NsYt7fvK9lE_zQ4a3QZ49vCeZB_P312dzSfLy9ni7M1yYnjB5ETTPK9q0xSNwKA5yEpiUpNS5rwQvKqlZAbnhgtiBCU1lFI0TeoXwmhaCs1Ostc73WGsOqgNuOh1qwZvO-03qtdW_d1x9lp97tdKlqLMsUwCrx4EfP9lhBBVZ4OBttUO-jEoWmJBc0F5ntCX_6A3_ehdspcoJmjiME_UdEelU4TgodkvQ7DaZqy2Gat9xmngxZ8W9vjvUBPAd8CtbWHzHzm1ujh_z1lydg_YYrWy</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Mitchelson, Kathleen A. J.</creator><creator>Tran, Tam T. T.</creator><creator>Dillon, Eugene T.</creator><creator>Vlckova, Klara</creator><creator>Harrison, Sabine M.</creator><creator>Ntemiri, Alexandra</creator><creator>Cunningham, Katie</creator><creator>Gibson, Irene</creator><creator>Finucane, Francis M.</creator><creator>O'Connor, Eibhlís M.</creator><creator>Roche, Helen M.</creator><creator>O'Toole, Paul W.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4558-4527</orcidid><orcidid>https://orcid.org/0000-0002-0628-3318</orcidid></search><sort><creationdate>202211</creationdate><title>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</title><author>Mitchelson, Kathleen A. J. ; Tran, Tam T. T. ; Dillon, Eugene T. ; Vlckova, Klara ; Harrison, Sabine M. ; Ntemiri, Alexandra ; Cunningham, Katie ; Gibson, Irene ; Finucane, Francis M. ; O'Connor, Eibhlís M. ; Roche, Helen M. ; O'Toole, Paul W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-a255bdcf6f80ea4e9b901d17954684bd993c05c481c821de798ffd1768ca278a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>beta-Glucans - pharmacology</topic><topic>Cholesterol</topic><topic>Colonization</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Gastrointestinal Microbiome</topic><topic>Glucan</topic><topic>Glucans</topic><topic>gut microbiota</topic><topic>hepatic triacylglycerol (TAG)</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Intestinal microflora</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Liver</topic><topic>Male</topic><topic>Metabolic response</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Obese</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Mitochondria</topic><topic>Modulators</topic><topic>Obesity</topic><topic>Obesity - metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteomics</topic><topic>Saccharomyces cerevisiae</topic><topic>Transplantation</topic><topic>type 2 diabetes</topic><topic>Yeast</topic><topic>yeast β‐glucan</topic><topic>Yeasts</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchelson, Kathleen A. J.</creatorcontrib><creatorcontrib>Tran, Tam T. T.</creatorcontrib><creatorcontrib>Dillon, Eugene T.</creatorcontrib><creatorcontrib>Vlckova, Klara</creatorcontrib><creatorcontrib>Harrison, Sabine M.</creatorcontrib><creatorcontrib>Ntemiri, Alexandra</creatorcontrib><creatorcontrib>Cunningham, Katie</creatorcontrib><creatorcontrib>Gibson, Irene</creatorcontrib><creatorcontrib>Finucane, Francis M.</creatorcontrib><creatorcontrib>O'Connor, Eibhlís M.</creatorcontrib><creatorcontrib>Roche, Helen M.</creatorcontrib><creatorcontrib>O'Toole, Paul W.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchelson, Kathleen A. J.</au><au>Tran, Tam T. T.</au><au>Dillon, Eugene T.</au><au>Vlckova, Klara</au><au>Harrison, Sabine M.</au><au>Ntemiri, Alexandra</au><au>Cunningham, Katie</au><au>Gibson, Irene</au><au>Finucane, Francis M.</au><au>O'Connor, Eibhlís M.</au><au>Roche, Helen M.</au><au>O'Toole, Paul W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol Nutr Food Res</addtitle><date>2022-11</date><risdate>2022</risdate><volume>66</volume><issue>22</issue><spage>e2100819</spage><epage>n/a</epage><pages>e2100819-n/a</pages><issn>1613-4125</issn><issn>1613-4133</issn><eissn>1613-4133</eissn><abstract>Scope Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β‐glucans are potential modulators of the innate immune‐metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β‐glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high‐fat dietary challenge. Methods and results Male C57BL/6J mice are pre‐inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high‐fat diet (HFD) with/without yeast β‐glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β‐glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health‐related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD‐induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β‐glucan supplementation. Conclusions Hepatic metabolism is adversely affected by OBD microbiome colonization with high‐fat feeding, but partially resolved by yeast β‐glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy. Gut microbiota dysbiosis is associated with obesity and type 2 diabetes. Human obese diabetic microbiome transplantation specifically augments high‐fat diet induced hepatic steatosis and insulin resistance beyond obesity alone, which was resolved by yeast β‐glucan supplementation. Reverting adverse metabolic phenotypes requires precision nutrition ‐ understanding the interactions between diet, gut microbiota, and host metabolism to improve dietary management efficacy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36038526</pmid><doi>10.1002/mnfr.202100819</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4558-4527</orcidid><orcidid>https://orcid.org/0000-0002-0628-3318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2022-11, Vol.66 (22), p.e2100819-n/a
issn 1613-4125
1613-4133
1613-4133
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9787509
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
beta-Glucans - pharmacology
Cholesterol
Colonization
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2
Diet
Diet, High-Fat - adverse effects
Gastrointestinal Microbiome
Glucan
Glucans
gut microbiota
hepatic triacylglycerol (TAG)
High fat diet
Homeostasis
Insulin
Insulin Resistance
Intestinal microflora
Lipid metabolism
Lipid Metabolism - genetics
Lipids
Liver
Male
Metabolic response
Metabolism
Mice
Mice, Inbred C57BL
Mice, Obese
Microbiomes
Microbiota
Mitochondria
Modulators
Obesity
Obesity - metabolism
Oxidative phosphorylation
Phenotypes
Phosphorylation
Protein biosynthesis
Protein synthesis
Proteomics
Saccharomyces cerevisiae
Transplantation
type 2 diabetes
Yeast
yeast β‐glucan
Yeasts
β-Glucan
title Yeast β‐Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20%CE%B2%E2%80%90Glucan%20Improves%20Insulin%20Sensitivity%20and%20Hepatic%20Lipid%20Metabolism%20in%20Mice%20Humanized%20with%20Obese%20Type%202%20Diabetic%20Gut%20Microbiota&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Mitchelson,%20Kathleen%20A.%20J.&rft.date=2022-11&rft.volume=66&rft.issue=22&rft.spage=e2100819&rft.epage=n/a&rft.pages=e2100819-n/a&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.202100819&rft_dat=%3Cproquest_pubme%3E2738282504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738282504&rft_id=info:pmid/36038526&rfr_iscdi=true