Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations
On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ~58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20 – 30...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2022-10, Vol.49 (19), p.e2022GL100091-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | e2022GL100091 |
container_title | Geophysical research letters |
container_volume | 49 |
creator | Taha, G Loughman, R Colarco, P R Zhu, T Thomason, L W Jaross, G |
description | On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ~58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20 – 30 km altitude, as observed by satellite instruments. We estimate that the stratospheric aerosol optical depth (sAOD) is the largest since the Pinatubo eruption and is at least twice as great as the sAOD after the 2015 Calbubo eruption despite the similar SO2 injection from that eruption. We use space-based observations to monitor the Hunga-Tonga volcanic plume evolution and transport at different altitudes as it circulates the globe. While the main aerosol layer remains trapped in the tropical pipe, small parts have already made it to both the northern and southern hemisphere poles by April, which is almost certain to influence this year's ozone hole. |
doi_str_mv | 10.1029/2022GL100091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723563732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4066-ef7852166f50c38e29608a87d1338b0ef9b97898332dc586150149d062ba07ed3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQQC0EokvhxhEhSxzgQMAfiWNfkJYV7CItqkS3Z8uJJ7su2TjYSVEP_HecplSFAxd75HnzNONB6Dkl7yhh6j0jjK23lBCi6AO0oCrPM0lI-RAt0lOKWSlO0JMYLxPCCaeP0QkXhWSskAv0axdM_d11ezwcAE8uvBm7vcE7n85sjjfm9bI3Di8h-OhbvGr9aLHrbmou-h4CNp3FX521LeDzIZjBx_4AIWXj5D7vTQ3ZRxPB4rMqQrgyg_NdfIoeNaaN8Oz2PkUXnz_tVptse7b-slpuszonQmTQlLJgVIimIDWXwJQg0sjSUs5lRaBRlSqlkpwzWxdS0ILQXFkiWGVICZafog-ztx-rI9gautRjq_vgjiZca2-c_jvTuYPe-yudtEKWLAne3AqC_zFCHPTRxRra1nTgx6hZWShVCClFQl_9g176MXRpvEQxXghe8kn4dqbq9KUxQHPXDCV62qu-v9eEv7w_wB38Z5EJYDPw07Vw_V-ZXn_bilyRqdUXc1FnotFp8ngDEkIFlTn_DRH2soI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723563732</pqid></control><display><type>article</type><title>Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>NASA Technical Reports Server</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Taha, G ; Loughman, R ; Colarco, P R ; Zhu, T ; Thomason, L W ; Jaross, G</creator><creatorcontrib>Taha, G ; Loughman, R ; Colarco, P R ; Zhu, T ; Thomason, L W ; Jaross, G</creatorcontrib><description>On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ~58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20 – 30 km altitude, as observed by satellite instruments. We estimate that the stratospheric aerosol optical depth (sAOD) is the largest since the Pinatubo eruption and is at least twice as great as the sAOD after the 2015 Calbubo eruption despite the similar SO2 injection from that eruption. We use space-based observations to monitor the Hunga-Tonga volcanic plume evolution and transport at different altitudes as it circulates the globe. While the main aerosol layer remains trapped in the tropical pipe, small parts have already made it to both the northern and southern hemisphere poles by April, which is almost certain to influence this year's ozone hole.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL100091</identifier><identifier>PMID: 36582258</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Geophysical Union</publisher><subject>Aerosol clouds ; Aerosol extinction ; Aerosol optical depth ; Aerosols ; Aerosols and Particles ; Altitude ; Atmospheric Composition and Structure ; Atmospheric Science ; Biogeosciences ; Clouds ; Earth Resources And Remote Sensing ; Emission measurements ; hunga Tonga ; Instruments ; Instruments and Techniques ; Marine Pollution ; Megacities and Urban Environment ; Middle Atmosphere: Composition and Chemistry ; Middle stratosphere ; Moisture content ; Natural Hazards ; Northern Hemisphere ; Oceanography: Biological and Chemical ; Oceanography: General ; OMPS LP ; Optical analysis ; Optical thickness ; Ozone ; Ozone depletion ; Ozone hole ; Ozone monitoring ; Paleoceanography ; Polar environments ; Polar regions ; Pollution: Urban and Regional ; Pollution: Urban, Regional and Global ; Research Letter ; SAGE III/ISS ; Satellite instruments ; Satellite observation ; Satellite tracking ; Satellites ; Southern Hemisphere ; Stratosphere ; Sulfates ; Sulfur dioxide ; Upper stratosphere ; Urban Systems ; volcanic eruption ; Volcanic eruptions ; Volcanic plumes ; Water content</subject><ispartof>Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL100091-n/a</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4066-ef7852166f50c38e29608a87d1338b0ef9b97898332dc586150149d062ba07ed3</citedby><cites>FETCH-LOGICAL-c4066-ef7852166f50c38e29608a87d1338b0ef9b97898332dc586150149d062ba07ed3</cites><orcidid>0000-0002-3006-7631 ; 0000-0003-3525-1662 ; 0000-0002-1902-0840 ; 0000-0001-8362-6516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL100091$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL100091$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,802,887,1419,1435,11521,27931,27932,45581,45582,46416,46475,46840,46899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36582258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taha, G</creatorcontrib><creatorcontrib>Loughman, R</creatorcontrib><creatorcontrib>Colarco, P R</creatorcontrib><creatorcontrib>Zhu, T</creatorcontrib><creatorcontrib>Thomason, L W</creatorcontrib><creatorcontrib>Jaross, G</creatorcontrib><title>Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations</title><title>Geophysical research letters</title><addtitle>Geophys Res Lett</addtitle><description>On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ~58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20 – 30 km altitude, as observed by satellite instruments. We estimate that the stratospheric aerosol optical depth (sAOD) is the largest since the Pinatubo eruption and is at least twice as great as the sAOD after the 2015 Calbubo eruption despite the similar SO2 injection from that eruption. We use space-based observations to monitor the Hunga-Tonga volcanic plume evolution and transport at different altitudes as it circulates the globe. While the main aerosol layer remains trapped in the tropical pipe, small parts have already made it to both the northern and southern hemisphere poles by April, which is almost certain to influence this year's ozone hole.</description><subject>Aerosol clouds</subject><subject>Aerosol extinction</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Aerosols and Particles</subject><subject>Altitude</subject><subject>Atmospheric Composition and Structure</subject><subject>Atmospheric Science</subject><subject>Biogeosciences</subject><subject>Clouds</subject><subject>Earth Resources And Remote Sensing</subject><subject>Emission measurements</subject><subject>hunga Tonga</subject><subject>Instruments</subject><subject>Instruments and Techniques</subject><subject>Marine Pollution</subject><subject>Megacities and Urban Environment</subject><subject>Middle Atmosphere: Composition and Chemistry</subject><subject>Middle stratosphere</subject><subject>Moisture content</subject><subject>Natural Hazards</subject><subject>Northern Hemisphere</subject><subject>Oceanography: Biological and Chemical</subject><subject>Oceanography: General</subject><subject>OMPS LP</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Ozone</subject><subject>Ozone depletion</subject><subject>Ozone hole</subject><subject>Ozone monitoring</subject><subject>Paleoceanography</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>Pollution: Urban and Regional</subject><subject>Pollution: Urban, Regional and Global</subject><subject>Research Letter</subject><subject>SAGE III/ISS</subject><subject>Satellite instruments</subject><subject>Satellite observation</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Southern Hemisphere</subject><subject>Stratosphere</subject><subject>Sulfates</subject><subject>Sulfur dioxide</subject><subject>Upper stratosphere</subject><subject>Urban Systems</subject><subject>volcanic eruption</subject><subject>Volcanic eruptions</subject><subject>Volcanic plumes</subject><subject>Water content</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kU1v1DAQQC0EokvhxhEhSxzgQMAfiWNfkJYV7CItqkS3Z8uJJ7su2TjYSVEP_HecplSFAxd75HnzNONB6Dkl7yhh6j0jjK23lBCi6AO0oCrPM0lI-RAt0lOKWSlO0JMYLxPCCaeP0QkXhWSskAv0axdM_d11ezwcAE8uvBm7vcE7n85sjjfm9bI3Di8h-OhbvGr9aLHrbmou-h4CNp3FX521LeDzIZjBx_4AIWXj5D7vTQ3ZRxPB4rMqQrgyg_NdfIoeNaaN8Oz2PkUXnz_tVptse7b-slpuszonQmTQlLJgVIimIDWXwJQg0sjSUs5lRaBRlSqlkpwzWxdS0ILQXFkiWGVICZafog-ztx-rI9gautRjq_vgjiZca2-c_jvTuYPe-yudtEKWLAne3AqC_zFCHPTRxRra1nTgx6hZWShVCClFQl_9g176MXRpvEQxXghe8kn4dqbq9KUxQHPXDCV62qu-v9eEv7w_wB38Z5EJYDPw07Vw_V-ZXn_bilyRqdUXc1FnotFp8ngDEkIFlTn_DRH2soI</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Taha, G</creator><creator>Loughman, R</creator><creator>Colarco, P R</creator><creator>Zhu, T</creator><creator>Thomason, L W</creator><creator>Jaross, G</creator><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>CYE</scope><scope>CYI</scope><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3006-7631</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-1902-0840</orcidid><orcidid>https://orcid.org/0000-0001-8362-6516</orcidid></search><sort><creationdate>20221016</creationdate><title>Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations</title><author>Taha, G ; Loughman, R ; Colarco, P R ; Zhu, T ; Thomason, L W ; Jaross, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4066-ef7852166f50c38e29608a87d1338b0ef9b97898332dc586150149d062ba07ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerosol clouds</topic><topic>Aerosol extinction</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Aerosols and Particles</topic><topic>Altitude</topic><topic>Atmospheric Composition and Structure</topic><topic>Atmospheric Science</topic><topic>Biogeosciences</topic><topic>Clouds</topic><topic>Earth Resources And Remote Sensing</topic><topic>Emission measurements</topic><topic>hunga Tonga</topic><topic>Instruments</topic><topic>Instruments and Techniques</topic><topic>Marine Pollution</topic><topic>Megacities and Urban Environment</topic><topic>Middle Atmosphere: Composition and Chemistry</topic><topic>Middle stratosphere</topic><topic>Moisture content</topic><topic>Natural Hazards</topic><topic>Northern Hemisphere</topic><topic>Oceanography: Biological and Chemical</topic><topic>Oceanography: General</topic><topic>OMPS LP</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Ozone</topic><topic>Ozone depletion</topic><topic>Ozone hole</topic><topic>Ozone monitoring</topic><topic>Paleoceanography</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>Pollution: Urban and Regional</topic><topic>Pollution: Urban, Regional and Global</topic><topic>Research Letter</topic><topic>SAGE III/ISS</topic><topic>Satellite instruments</topic><topic>Satellite observation</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Southern Hemisphere</topic><topic>Stratosphere</topic><topic>Sulfates</topic><topic>Sulfur dioxide</topic><topic>Upper stratosphere</topic><topic>Urban Systems</topic><topic>volcanic eruption</topic><topic>Volcanic eruptions</topic><topic>Volcanic plumes</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taha, G</creatorcontrib><creatorcontrib>Loughman, R</creatorcontrib><creatorcontrib>Colarco, P R</creatorcontrib><creatorcontrib>Zhu, T</creatorcontrib><creatorcontrib>Thomason, L W</creatorcontrib><creatorcontrib>Jaross, G</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taha, G</au><au>Loughman, R</au><au>Colarco, P R</au><au>Zhu, T</au><au>Thomason, L W</au><au>Jaross, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys Res Lett</addtitle><date>2022-10-16</date><risdate>2022</risdate><volume>49</volume><issue>19</issue><spage>e2022GL100091</spage><epage>n/a</epage><pages>e2022GL100091-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>On 15 January 2022, the submarine Hunga Tonga volcanic eruption lofted materials high into the upper stratosphere, reaching a record-breaking altitude of ~58 km, unprecedented in the satellite observations era. Within two weeks, the bulk of the injected material circulated the globe between 20 – 30 km altitude, as observed by satellite instruments. We estimate that the stratospheric aerosol optical depth (sAOD) is the largest since the Pinatubo eruption and is at least twice as great as the sAOD after the 2015 Calbubo eruption despite the similar SO2 injection from that eruption. We use space-based observations to monitor the Hunga-Tonga volcanic plume evolution and transport at different altitudes as it circulates the globe. While the main aerosol layer remains trapped in the tropical pipe, small parts have already made it to both the northern and southern hemisphere poles by April, which is almost certain to influence this year's ozone hole.</abstract><cop>Goddard Space Flight Center</cop><pub>American Geophysical Union</pub><pmid>36582258</pmid><doi>10.1029/2022GL100091</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3006-7631</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-1902-0840</orcidid><orcidid>https://orcid.org/0000-0001-8362-6516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL100091-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786872 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; NASA Technical Reports Server; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Aerosol clouds Aerosol extinction Aerosol optical depth Aerosols Aerosols and Particles Altitude Atmospheric Composition and Structure Atmospheric Science Biogeosciences Clouds Earth Resources And Remote Sensing Emission measurements hunga Tonga Instruments Instruments and Techniques Marine Pollution Megacities and Urban Environment Middle Atmosphere: Composition and Chemistry Middle stratosphere Moisture content Natural Hazards Northern Hemisphere Oceanography: Biological and Chemical Oceanography: General OMPS LP Optical analysis Optical thickness Ozone Ozone depletion Ozone hole Ozone monitoring Paleoceanography Polar environments Polar regions Pollution: Urban and Regional Pollution: Urban, Regional and Global Research Letter SAGE III/ISS Satellite instruments Satellite observation Satellite tracking Satellites Southern Hemisphere Stratosphere Sulfates Sulfur dioxide Upper stratosphere Urban Systems volcanic eruption Volcanic eruptions Volcanic plumes Water content |
title | Tracking the 2022 Hunga Tonga-Hunga Ha'Apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%202022%20Hunga%20Tonga-Hunga%20Ha'Apai%20Aerosol%20Cloud%20in%20the%20Upper%20and%20Middle%20Stratosphere%20Using%20Space-Based%20Observations&rft.jtitle=Geophysical%20research%20letters&rft.au=Taha,%20G&rft.date=2022-10-16&rft.volume=49&rft.issue=19&rft.spage=e2022GL100091&rft.epage=n/a&rft.pages=e2022GL100091-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL100091&rft_dat=%3Cproquest_pubme%3E2723563732%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723563732&rft_id=info:pmid/36582258&rfr_iscdi=true |