Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability

Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-10, Vol.49 (20), p.e2022GL100136-n/a
Hauptverfasser: Liu, Fukai, Lu, Jian, Kwon, Young‐Oh, Frankignoul, Claude, Luo, Yiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e2022GL100136
container_title Geophysical research letters
container_volume 49
creator Liu, Fukai
Lu, Jian
Kwon, Young‐Oh
Frankignoul, Claude
Luo, Yiyong
description Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip. Plain Language Summary The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies. Key Points The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overtu
doi_str_mv 10.1029/2022GL100136
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729048733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</originalsourceid><addsrcrecordid>eNp9kcFuEzEURa0K1KaBHWs0glWlBp7t8djeIEURSZEGFSFasbNsx-m4mo6LPWmaXT-h38iX4DKlCizY2H72eVfX9yH0CsM7DES-J0DIosYAmFZ7aIRlWU4EAH-GRgAynwmvDtBhSpcAQIHifXRAKyYIZXSEvs-jS81G9y4W83Z9W5zr6LXxre-3Re26i75xXSryWnxx0YdlEVa_qzpsft7d5-4fa9fZbTH9fDrbbX6Bnq90m9zLx32MzuYfv81OJvXp4tNsWk8swxVMmCQiWybWCU0NrJZOGGlItsowMVLrEjOq3ZJbowUvjSmJ4MwaaqgmWpR0jD4Mutdrc-WW1nV91K26jv5Kx60K2qu_XzrfqItwoyQXVZXzGKM3g0BIvVfJ-t7Zxoauc7ZXWOaIGc_Q0QA1_2ifTGv1cAdUECZLuMGZffvoKIYcTurVZVjHLoegCCcSSsEpzdTxQNkYUopu9SSLQT0MVu0ONuOvd7_5BP-ZZAbIAGx867b_FVOLr3XFAAP9BUQLq-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729048733</pqid></control><display><type>article</type><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong</creator><creatorcontrib>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip. Plain Language Summary The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies. Key Points The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability The contribution from salinity in generating deep convection is enhanced with the active FWF effect Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL100136</identifier><identifier>PMID: 36582353</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Abrupt/Rapid Climate Change ; Air/Sea Constituent Fluxes ; Air/Sea Interactions ; AMOC ; Anomalies ; Atlantic Meridional Overturning Circulation ; Atlantic Meridional Overturning Circulation (AMOC) ; Atmospheric ; Atmospheric Composition and Structure ; Atmospheric Effects ; Atmospheric forcing ; Atmospheric Processes ; Avalanches ; Benefit‐cost Analysis ; Biogeosciences ; buayancy flux ; Climate ; Climate and Interannual Variability ; Climate Change and Variability ; Climate Dynamics ; Climate Impact ; Climate Impacts ; Climate Variability ; Climatology ; Computational Geophysics ; Convection ; Coupled Models of the Climate System ; Coupling ; Cryosphere ; Decadal Ocean Variability ; Density ; Disaster Risk Analysis and Assessment ; Earth System Modeling ; Earthquake Ground Motions and Engineering Seismology ; Effusive Volcanism ; Environmental Sciences ; Evaporation ; Explosive Volcanism ; Freshwater ; freshwater flux ; General Circulation ; Geodesy and Gravity ; Geological ; GEOSCIENCES ; Global Change ; Global Change from Geodesy ; Gravity and Isostasy ; Hydrological Cycles and Budgets ; Hydrology ; Ice melting ; Impacts of Global Change ; Informatics ; Inland water environment ; internal variability ; Land/Atmosphere Interactions ; Marine Geology and Geophysics ; Mass Balance ; Melting ; Modeling ; Mud Volcanism ; Natural Hazards ; Numerical Modeling ; Numerical Solutions ; Ocean influence of Earth rotation ; Ocean Monitoring with Geodetic Techniques ; Ocean/Atmosphere Interactions ; Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions ; Oceanic ; Oceanography: General ; Oceanography: Physical ; Oceans ; Paleoceanography ; Periodicity ; Physical Modeling ; Policy Sciences ; Radio Oceanography ; Radio Science ; Regional Climate Change ; Regional Modeling ; Research Letter ; Risk ; Salinity ; Salinity effects ; Sea ice ; Sea Level Change ; Sea Level: Variations and Mean ; Seismology ; Solid Earth ; subpolar North Atlantic ; Surface water ; Surface Waves and Tides ; Temperature anomalies ; Temperature changes ; Temperature effects ; Theoretical Modeling ; Time ; Tsunamis and Storm Surges ; Variability ; Volcanic Effects ; Volcanic Hazards and Risks ; Volcano Monitoring ; Volcano Seismology ; Volcano/Climate Interactions ; Volcanology ; Water Cycles</subject><ispartof>Geophysical research letters, 2022-10, Vol.49 (20), p.e2022GL100136-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</citedby><cites>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</cites><orcidid>0000-0001-7038-1839 ; 0000-0001-9448-9684 ; 0000-0001-8245-6930 ; 0000-0002-0687-9568 ; 0000000206879568 ; 0000000194489684 ; 0000000182456930 ; 0000000170381839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL100136$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL100136$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36582353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03825940$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1902957$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fukai</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Kwon, Young‐Oh</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Luo, Yiyong</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><title>Geophysical research letters</title><addtitle>Geophys Res Lett</addtitle><description>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip. Plain Language Summary The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies. Key Points The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability The contribution from salinity in generating deep convection is enhanced with the active FWF effect Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</description><subject>Abrupt/Rapid Climate Change</subject><subject>Air/Sea Constituent Fluxes</subject><subject>Air/Sea Interactions</subject><subject>AMOC</subject><subject>Anomalies</subject><subject>Atlantic Meridional Overturning Circulation</subject><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Atmospheric</subject><subject>Atmospheric Composition and Structure</subject><subject>Atmospheric Effects</subject><subject>Atmospheric forcing</subject><subject>Atmospheric Processes</subject><subject>Avalanches</subject><subject>Benefit‐cost Analysis</subject><subject>Biogeosciences</subject><subject>buayancy flux</subject><subject>Climate</subject><subject>Climate and Interannual Variability</subject><subject>Climate Change and Variability</subject><subject>Climate Dynamics</subject><subject>Climate Impact</subject><subject>Climate Impacts</subject><subject>Climate Variability</subject><subject>Climatology</subject><subject>Computational Geophysics</subject><subject>Convection</subject><subject>Coupled Models of the Climate System</subject><subject>Coupling</subject><subject>Cryosphere</subject><subject>Decadal Ocean Variability</subject><subject>Density</subject><subject>Disaster Risk Analysis and Assessment</subject><subject>Earth System Modeling</subject><subject>Earthquake Ground Motions and Engineering Seismology</subject><subject>Effusive Volcanism</subject><subject>Environmental Sciences</subject><subject>Evaporation</subject><subject>Explosive Volcanism</subject><subject>Freshwater</subject><subject>freshwater flux</subject><subject>General Circulation</subject><subject>Geodesy and Gravity</subject><subject>Geological</subject><subject>GEOSCIENCES</subject><subject>Global Change</subject><subject>Global Change from Geodesy</subject><subject>Gravity and Isostasy</subject><subject>Hydrological Cycles and Budgets</subject><subject>Hydrology</subject><subject>Ice melting</subject><subject>Impacts of Global Change</subject><subject>Informatics</subject><subject>Inland water environment</subject><subject>internal variability</subject><subject>Land/Atmosphere Interactions</subject><subject>Marine Geology and Geophysics</subject><subject>Mass Balance</subject><subject>Melting</subject><subject>Modeling</subject><subject>Mud Volcanism</subject><subject>Natural Hazards</subject><subject>Numerical Modeling</subject><subject>Numerical Solutions</subject><subject>Ocean influence of Earth rotation</subject><subject>Ocean Monitoring with Geodetic Techniques</subject><subject>Ocean/Atmosphere Interactions</subject><subject>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</subject><subject>Oceanic</subject><subject>Oceanography: General</subject><subject>Oceanography: Physical</subject><subject>Oceans</subject><subject>Paleoceanography</subject><subject>Periodicity</subject><subject>Physical Modeling</subject><subject>Policy Sciences</subject><subject>Radio Oceanography</subject><subject>Radio Science</subject><subject>Regional Climate Change</subject><subject>Regional Modeling</subject><subject>Research Letter</subject><subject>Risk</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sea ice</subject><subject>Sea Level Change</subject><subject>Sea Level: Variations and Mean</subject><subject>Seismology</subject><subject>Solid Earth</subject><subject>subpolar North Atlantic</subject><subject>Surface water</subject><subject>Surface Waves and Tides</subject><subject>Temperature anomalies</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Theoretical Modeling</subject><subject>Time</subject><subject>Tsunamis and Storm Surges</subject><subject>Variability</subject><subject>Volcanic Effects</subject><subject>Volcanic Hazards and Risks</subject><subject>Volcano Monitoring</subject><subject>Volcano Seismology</subject><subject>Volcano/Climate Interactions</subject><subject>Volcanology</subject><subject>Water Cycles</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcFuEzEURa0K1KaBHWs0glWlBp7t8djeIEURSZEGFSFasbNsx-m4mo6LPWmaXT-h38iX4DKlCizY2H72eVfX9yH0CsM7DES-J0DIosYAmFZ7aIRlWU4EAH-GRgAynwmvDtBhSpcAQIHifXRAKyYIZXSEvs-jS81G9y4W83Z9W5zr6LXxre-3Re26i75xXSryWnxx0YdlEVa_qzpsft7d5-4fa9fZbTH9fDrbbX6Bnq90m9zLx32MzuYfv81OJvXp4tNsWk8swxVMmCQiWybWCU0NrJZOGGlItsowMVLrEjOq3ZJbowUvjSmJ4MwaaqgmWpR0jD4Mutdrc-WW1nV91K26jv5Kx60K2qu_XzrfqItwoyQXVZXzGKM3g0BIvVfJ-t7Zxoauc7ZXWOaIGc_Q0QA1_2ifTGv1cAdUECZLuMGZffvoKIYcTurVZVjHLoegCCcSSsEpzdTxQNkYUopu9SSLQT0MVu0ONuOvd7_5BP-ZZAbIAGx867b_FVOLr3XFAAP9BUQLq-M</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Liu, Fukai</creator><creator>Lu, Jian</creator><creator>Kwon, Young‐Oh</creator><creator>Frankignoul, Claude</creator><creator>Luo, Yiyong</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><general>American Geophysical Union (AGU)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid><orcidid>https://orcid.org/0000-0001-9448-9684</orcidid><orcidid>https://orcid.org/0000-0001-8245-6930</orcidid><orcidid>https://orcid.org/0000-0002-0687-9568</orcidid><orcidid>https://orcid.org/0000000206879568</orcidid><orcidid>https://orcid.org/0000000194489684</orcidid><orcidid>https://orcid.org/0000000182456930</orcidid><orcidid>https://orcid.org/0000000170381839</orcidid></search><sort><creationdate>20221028</creationdate><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><author>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abrupt/Rapid Climate Change</topic><topic>Air/Sea Constituent Fluxes</topic><topic>Air/Sea Interactions</topic><topic>AMOC</topic><topic>Anomalies</topic><topic>Atlantic Meridional Overturning Circulation</topic><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Atmospheric</topic><topic>Atmospheric Composition and Structure</topic><topic>Atmospheric Effects</topic><topic>Atmospheric forcing</topic><topic>Atmospheric Processes</topic><topic>Avalanches</topic><topic>Benefit‐cost Analysis</topic><topic>Biogeosciences</topic><topic>buayancy flux</topic><topic>Climate</topic><topic>Climate and Interannual Variability</topic><topic>Climate Change and Variability</topic><topic>Climate Dynamics</topic><topic>Climate Impact</topic><topic>Climate Impacts</topic><topic>Climate Variability</topic><topic>Climatology</topic><topic>Computational Geophysics</topic><topic>Convection</topic><topic>Coupled Models of the Climate System</topic><topic>Coupling</topic><topic>Cryosphere</topic><topic>Decadal Ocean Variability</topic><topic>Density</topic><topic>Disaster Risk Analysis and Assessment</topic><topic>Earth System Modeling</topic><topic>Earthquake Ground Motions and Engineering Seismology</topic><topic>Effusive Volcanism</topic><topic>Environmental Sciences</topic><topic>Evaporation</topic><topic>Explosive Volcanism</topic><topic>Freshwater</topic><topic>freshwater flux</topic><topic>General Circulation</topic><topic>Geodesy and Gravity</topic><topic>Geological</topic><topic>GEOSCIENCES</topic><topic>Global Change</topic><topic>Global Change from Geodesy</topic><topic>Gravity and Isostasy</topic><topic>Hydrological Cycles and Budgets</topic><topic>Hydrology</topic><topic>Ice melting</topic><topic>Impacts of Global Change</topic><topic>Informatics</topic><topic>Inland water environment</topic><topic>internal variability</topic><topic>Land/Atmosphere Interactions</topic><topic>Marine Geology and Geophysics</topic><topic>Mass Balance</topic><topic>Melting</topic><topic>Modeling</topic><topic>Mud Volcanism</topic><topic>Natural Hazards</topic><topic>Numerical Modeling</topic><topic>Numerical Solutions</topic><topic>Ocean influence of Earth rotation</topic><topic>Ocean Monitoring with Geodetic Techniques</topic><topic>Ocean/Atmosphere Interactions</topic><topic>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</topic><topic>Oceanic</topic><topic>Oceanography: General</topic><topic>Oceanography: Physical</topic><topic>Oceans</topic><topic>Paleoceanography</topic><topic>Periodicity</topic><topic>Physical Modeling</topic><topic>Policy Sciences</topic><topic>Radio Oceanography</topic><topic>Radio Science</topic><topic>Regional Climate Change</topic><topic>Regional Modeling</topic><topic>Research Letter</topic><topic>Risk</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sea ice</topic><topic>Sea Level Change</topic><topic>Sea Level: Variations and Mean</topic><topic>Seismology</topic><topic>Solid Earth</topic><topic>subpolar North Atlantic</topic><topic>Surface water</topic><topic>Surface Waves and Tides</topic><topic>Temperature anomalies</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Theoretical Modeling</topic><topic>Time</topic><topic>Tsunamis and Storm Surges</topic><topic>Variability</topic><topic>Volcanic Effects</topic><topic>Volcanic Hazards and Risks</topic><topic>Volcano Monitoring</topic><topic>Volcano Seismology</topic><topic>Volcano/Climate Interactions</topic><topic>Volcanology</topic><topic>Water Cycles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fukai</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Kwon, Young‐Oh</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Luo, Yiyong</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fukai</au><au>Lu, Jian</au><au>Kwon, Young‐Oh</au><au>Frankignoul, Claude</au><au>Luo, Yiyong</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys Res Lett</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>49</volume><issue>20</issue><spage>e2022GL100136</spage><epage>n/a</epage><pages>e2022GL100136-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip. Plain Language Summary The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies. Key Points The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability The contribution from salinity in generating deep convection is enhanced with the active FWF effect Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36582353</pmid><doi>10.1029/2022GL100136</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid><orcidid>https://orcid.org/0000-0001-9448-9684</orcidid><orcidid>https://orcid.org/0000-0001-8245-6930</orcidid><orcidid>https://orcid.org/0000-0002-0687-9568</orcidid><orcidid>https://orcid.org/0000000206879568</orcidid><orcidid>https://orcid.org/0000000194489684</orcidid><orcidid>https://orcid.org/0000000182456930</orcidid><orcidid>https://orcid.org/0000000170381839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-10, Vol.49 (20), p.e2022GL100136-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786630
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
AMOC
Anomalies
Atlantic Meridional Overturning Circulation
Atlantic Meridional Overturning Circulation (AMOC)
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric forcing
Atmospheric Processes
Avalanches
Benefit‐cost Analysis
Biogeosciences
buayancy flux
Climate
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Computational Geophysics
Convection
Coupled Models of the Climate System
Coupling
Cryosphere
Decadal Ocean Variability
Density
Disaster Risk Analysis and Assessment
Earth System Modeling
Earthquake Ground Motions and Engineering Seismology
Effusive Volcanism
Environmental Sciences
Evaporation
Explosive Volcanism
Freshwater
freshwater flux
General Circulation
Geodesy and Gravity
Geological
GEOSCIENCES
Global Change
Global Change from Geodesy
Gravity and Isostasy
Hydrological Cycles and Budgets
Hydrology
Ice melting
Impacts of Global Change
Informatics
Inland water environment
internal variability
Land/Atmosphere Interactions
Marine Geology and Geophysics
Mass Balance
Melting
Modeling
Mud Volcanism
Natural Hazards
Numerical Modeling
Numerical Solutions
Ocean influence of Earth rotation
Ocean Monitoring with Geodetic Techniques
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: General
Oceanography: Physical
Oceans
Paleoceanography
Periodicity
Physical Modeling
Policy Sciences
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Research Letter
Risk
Salinity
Salinity effects
Sea ice
Sea Level Change
Sea Level: Variations and Mean
Seismology
Solid Earth
subpolar North Atlantic
Surface water
Surface Waves and Tides
Temperature anomalies
Temperature changes
Temperature effects
Theoretical Modeling
Time
Tsunamis and Storm Surges
Variability
Volcanic Effects
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water Cycles
title Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freshwater%20Flux%20Variability%20Lengthens%20the%20Period%20of%20the%20Low%E2%80%90Frequency%20AMOC%20Variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Liu,%20Fukai&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2022-10-28&rft.volume=49&rft.issue=20&rft.spage=e2022GL100136&rft.epage=n/a&rft.pages=e2022GL100136-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL100136&rft_dat=%3Cproquest_pubme%3E2729048733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729048733&rft_id=info:pmid/36582353&rfr_iscdi=true