Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability
Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially cou...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2022-10, Vol.49 (20), p.e2022GL100136-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | e2022GL100136 |
container_title | Geophysical research letters |
container_volume | 49 |
creator | Liu, Fukai Lu, Jian Kwon, Young‐Oh Frankignoul, Claude Luo, Yiyong |
description | Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.
Plain Language Summary
The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies.
Key Points
The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overtu |
doi_str_mv | 10.1029/2022GL100136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729048733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</originalsourceid><addsrcrecordid>eNp9kcFuEzEURa0K1KaBHWs0glWlBp7t8djeIEURSZEGFSFasbNsx-m4mo6LPWmaXT-h38iX4DKlCizY2H72eVfX9yH0CsM7DES-J0DIosYAmFZ7aIRlWU4EAH-GRgAynwmvDtBhSpcAQIHifXRAKyYIZXSEvs-jS81G9y4W83Z9W5zr6LXxre-3Re26i75xXSryWnxx0YdlEVa_qzpsft7d5-4fa9fZbTH9fDrbbX6Bnq90m9zLx32MzuYfv81OJvXp4tNsWk8swxVMmCQiWybWCU0NrJZOGGlItsowMVLrEjOq3ZJbowUvjSmJ4MwaaqgmWpR0jD4Mutdrc-WW1nV91K26jv5Kx60K2qu_XzrfqItwoyQXVZXzGKM3g0BIvVfJ-t7Zxoauc7ZXWOaIGc_Q0QA1_2ifTGv1cAdUECZLuMGZffvoKIYcTurVZVjHLoegCCcSSsEpzdTxQNkYUopu9SSLQT0MVu0ONuOvd7_5BP-ZZAbIAGx867b_FVOLr3XFAAP9BUQLq-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729048733</pqid></control><display><type>article</type><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong</creator><creatorcontrib>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.
Plain Language Summary
The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies.
Key Points
The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability
The contribution from salinity in generating deep convection is enhanced with the active FWF effect
Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL100136</identifier><identifier>PMID: 36582353</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Abrupt/Rapid Climate Change ; Air/Sea Constituent Fluxes ; Air/Sea Interactions ; AMOC ; Anomalies ; Atlantic Meridional Overturning Circulation ; Atlantic Meridional Overturning Circulation (AMOC) ; Atmospheric ; Atmospheric Composition and Structure ; Atmospheric Effects ; Atmospheric forcing ; Atmospheric Processes ; Avalanches ; Benefit‐cost Analysis ; Biogeosciences ; buayancy flux ; Climate ; Climate and Interannual Variability ; Climate Change and Variability ; Climate Dynamics ; Climate Impact ; Climate Impacts ; Climate Variability ; Climatology ; Computational Geophysics ; Convection ; Coupled Models of the Climate System ; Coupling ; Cryosphere ; Decadal Ocean Variability ; Density ; Disaster Risk Analysis and Assessment ; Earth System Modeling ; Earthquake Ground Motions and Engineering Seismology ; Effusive Volcanism ; Environmental Sciences ; Evaporation ; Explosive Volcanism ; Freshwater ; freshwater flux ; General Circulation ; Geodesy and Gravity ; Geological ; GEOSCIENCES ; Global Change ; Global Change from Geodesy ; Gravity and Isostasy ; Hydrological Cycles and Budgets ; Hydrology ; Ice melting ; Impacts of Global Change ; Informatics ; Inland water environment ; internal variability ; Land/Atmosphere Interactions ; Marine Geology and Geophysics ; Mass Balance ; Melting ; Modeling ; Mud Volcanism ; Natural Hazards ; Numerical Modeling ; Numerical Solutions ; Ocean influence of Earth rotation ; Ocean Monitoring with Geodetic Techniques ; Ocean/Atmosphere Interactions ; Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions ; Oceanic ; Oceanography: General ; Oceanography: Physical ; Oceans ; Paleoceanography ; Periodicity ; Physical Modeling ; Policy Sciences ; Radio Oceanography ; Radio Science ; Regional Climate Change ; Regional Modeling ; Research Letter ; Risk ; Salinity ; Salinity effects ; Sea ice ; Sea Level Change ; Sea Level: Variations and Mean ; Seismology ; Solid Earth ; subpolar North Atlantic ; Surface water ; Surface Waves and Tides ; Temperature anomalies ; Temperature changes ; Temperature effects ; Theoretical Modeling ; Time ; Tsunamis and Storm Surges ; Variability ; Volcanic Effects ; Volcanic Hazards and Risks ; Volcano Monitoring ; Volcano Seismology ; Volcano/Climate Interactions ; Volcanology ; Water Cycles</subject><ispartof>Geophysical research letters, 2022-10, Vol.49 (20), p.e2022GL100136-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</citedby><cites>FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</cites><orcidid>0000-0001-7038-1839 ; 0000-0001-9448-9684 ; 0000-0001-8245-6930 ; 0000-0002-0687-9568 ; 0000000206879568 ; 0000000194489684 ; 0000000182456930 ; 0000000170381839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL100136$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL100136$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36582353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03825940$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1902957$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Fukai</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Kwon, Young‐Oh</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Luo, Yiyong</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><title>Geophysical research letters</title><addtitle>Geophys Res Lett</addtitle><description>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.
Plain Language Summary
The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies.
Key Points
The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability
The contribution from salinity in generating deep convection is enhanced with the active FWF effect
Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</description><subject>Abrupt/Rapid Climate Change</subject><subject>Air/Sea Constituent Fluxes</subject><subject>Air/Sea Interactions</subject><subject>AMOC</subject><subject>Anomalies</subject><subject>Atlantic Meridional Overturning Circulation</subject><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Atmospheric</subject><subject>Atmospheric Composition and Structure</subject><subject>Atmospheric Effects</subject><subject>Atmospheric forcing</subject><subject>Atmospheric Processes</subject><subject>Avalanches</subject><subject>Benefit‐cost Analysis</subject><subject>Biogeosciences</subject><subject>buayancy flux</subject><subject>Climate</subject><subject>Climate and Interannual Variability</subject><subject>Climate Change and Variability</subject><subject>Climate Dynamics</subject><subject>Climate Impact</subject><subject>Climate Impacts</subject><subject>Climate Variability</subject><subject>Climatology</subject><subject>Computational Geophysics</subject><subject>Convection</subject><subject>Coupled Models of the Climate System</subject><subject>Coupling</subject><subject>Cryosphere</subject><subject>Decadal Ocean Variability</subject><subject>Density</subject><subject>Disaster Risk Analysis and Assessment</subject><subject>Earth System Modeling</subject><subject>Earthquake Ground Motions and Engineering Seismology</subject><subject>Effusive Volcanism</subject><subject>Environmental Sciences</subject><subject>Evaporation</subject><subject>Explosive Volcanism</subject><subject>Freshwater</subject><subject>freshwater flux</subject><subject>General Circulation</subject><subject>Geodesy and Gravity</subject><subject>Geological</subject><subject>GEOSCIENCES</subject><subject>Global Change</subject><subject>Global Change from Geodesy</subject><subject>Gravity and Isostasy</subject><subject>Hydrological Cycles and Budgets</subject><subject>Hydrology</subject><subject>Ice melting</subject><subject>Impacts of Global Change</subject><subject>Informatics</subject><subject>Inland water environment</subject><subject>internal variability</subject><subject>Land/Atmosphere Interactions</subject><subject>Marine Geology and Geophysics</subject><subject>Mass Balance</subject><subject>Melting</subject><subject>Modeling</subject><subject>Mud Volcanism</subject><subject>Natural Hazards</subject><subject>Numerical Modeling</subject><subject>Numerical Solutions</subject><subject>Ocean influence of Earth rotation</subject><subject>Ocean Monitoring with Geodetic Techniques</subject><subject>Ocean/Atmosphere Interactions</subject><subject>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</subject><subject>Oceanic</subject><subject>Oceanography: General</subject><subject>Oceanography: Physical</subject><subject>Oceans</subject><subject>Paleoceanography</subject><subject>Periodicity</subject><subject>Physical Modeling</subject><subject>Policy Sciences</subject><subject>Radio Oceanography</subject><subject>Radio Science</subject><subject>Regional Climate Change</subject><subject>Regional Modeling</subject><subject>Research Letter</subject><subject>Risk</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sea ice</subject><subject>Sea Level Change</subject><subject>Sea Level: Variations and Mean</subject><subject>Seismology</subject><subject>Solid Earth</subject><subject>subpolar North Atlantic</subject><subject>Surface water</subject><subject>Surface Waves and Tides</subject><subject>Temperature anomalies</subject><subject>Temperature changes</subject><subject>Temperature effects</subject><subject>Theoretical Modeling</subject><subject>Time</subject><subject>Tsunamis and Storm Surges</subject><subject>Variability</subject><subject>Volcanic Effects</subject><subject>Volcanic Hazards and Risks</subject><subject>Volcano Monitoring</subject><subject>Volcano Seismology</subject><subject>Volcano/Climate Interactions</subject><subject>Volcanology</subject><subject>Water Cycles</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kcFuEzEURa0K1KaBHWs0glWlBp7t8djeIEURSZEGFSFasbNsx-m4mo6LPWmaXT-h38iX4DKlCizY2H72eVfX9yH0CsM7DES-J0DIosYAmFZ7aIRlWU4EAH-GRgAynwmvDtBhSpcAQIHifXRAKyYIZXSEvs-jS81G9y4W83Z9W5zr6LXxre-3Re26i75xXSryWnxx0YdlEVa_qzpsft7d5-4fa9fZbTH9fDrbbX6Bnq90m9zLx32MzuYfv81OJvXp4tNsWk8swxVMmCQiWybWCU0NrJZOGGlItsowMVLrEjOq3ZJbowUvjSmJ4MwaaqgmWpR0jD4Mutdrc-WW1nV91K26jv5Kx60K2qu_XzrfqItwoyQXVZXzGKM3g0BIvVfJ-t7Zxoauc7ZXWOaIGc_Q0QA1_2ifTGv1cAdUECZLuMGZffvoKIYcTurVZVjHLoegCCcSSsEpzdTxQNkYUopu9SSLQT0MVu0ONuOvd7_5BP-ZZAbIAGx867b_FVOLr3XFAAP9BUQLq-M</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Liu, Fukai</creator><creator>Lu, Jian</creator><creator>Kwon, Young‐Oh</creator><creator>Frankignoul, Claude</creator><creator>Luo, Yiyong</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><general>American Geophysical Union (AGU)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid><orcidid>https://orcid.org/0000-0001-9448-9684</orcidid><orcidid>https://orcid.org/0000-0001-8245-6930</orcidid><orcidid>https://orcid.org/0000-0002-0687-9568</orcidid><orcidid>https://orcid.org/0000000206879568</orcidid><orcidid>https://orcid.org/0000000194489684</orcidid><orcidid>https://orcid.org/0000000182456930</orcidid><orcidid>https://orcid.org/0000000170381839</orcidid></search><sort><creationdate>20221028</creationdate><title>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</title><author>Liu, Fukai ; Lu, Jian ; Kwon, Young‐Oh ; Frankignoul, Claude ; Luo, Yiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5160-59281942ce8a3b0fde8b9b2000512b9aa4153aed7cba874bb42875cb3b3a2a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abrupt/Rapid Climate Change</topic><topic>Air/Sea Constituent Fluxes</topic><topic>Air/Sea Interactions</topic><topic>AMOC</topic><topic>Anomalies</topic><topic>Atlantic Meridional Overturning Circulation</topic><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Atmospheric</topic><topic>Atmospheric Composition and Structure</topic><topic>Atmospheric Effects</topic><topic>Atmospheric forcing</topic><topic>Atmospheric Processes</topic><topic>Avalanches</topic><topic>Benefit‐cost Analysis</topic><topic>Biogeosciences</topic><topic>buayancy flux</topic><topic>Climate</topic><topic>Climate and Interannual Variability</topic><topic>Climate Change and Variability</topic><topic>Climate Dynamics</topic><topic>Climate Impact</topic><topic>Climate Impacts</topic><topic>Climate Variability</topic><topic>Climatology</topic><topic>Computational Geophysics</topic><topic>Convection</topic><topic>Coupled Models of the Climate System</topic><topic>Coupling</topic><topic>Cryosphere</topic><topic>Decadal Ocean Variability</topic><topic>Density</topic><topic>Disaster Risk Analysis and Assessment</topic><topic>Earth System Modeling</topic><topic>Earthquake Ground Motions and Engineering Seismology</topic><topic>Effusive Volcanism</topic><topic>Environmental Sciences</topic><topic>Evaporation</topic><topic>Explosive Volcanism</topic><topic>Freshwater</topic><topic>freshwater flux</topic><topic>General Circulation</topic><topic>Geodesy and Gravity</topic><topic>Geological</topic><topic>GEOSCIENCES</topic><topic>Global Change</topic><topic>Global Change from Geodesy</topic><topic>Gravity and Isostasy</topic><topic>Hydrological Cycles and Budgets</topic><topic>Hydrology</topic><topic>Ice melting</topic><topic>Impacts of Global Change</topic><topic>Informatics</topic><topic>Inland water environment</topic><topic>internal variability</topic><topic>Land/Atmosphere Interactions</topic><topic>Marine Geology and Geophysics</topic><topic>Mass Balance</topic><topic>Melting</topic><topic>Modeling</topic><topic>Mud Volcanism</topic><topic>Natural Hazards</topic><topic>Numerical Modeling</topic><topic>Numerical Solutions</topic><topic>Ocean influence of Earth rotation</topic><topic>Ocean Monitoring with Geodetic Techniques</topic><topic>Ocean/Atmosphere Interactions</topic><topic>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</topic><topic>Oceanic</topic><topic>Oceanography: General</topic><topic>Oceanography: Physical</topic><topic>Oceans</topic><topic>Paleoceanography</topic><topic>Periodicity</topic><topic>Physical Modeling</topic><topic>Policy Sciences</topic><topic>Radio Oceanography</topic><topic>Radio Science</topic><topic>Regional Climate Change</topic><topic>Regional Modeling</topic><topic>Research Letter</topic><topic>Risk</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sea ice</topic><topic>Sea Level Change</topic><topic>Sea Level: Variations and Mean</topic><topic>Seismology</topic><topic>Solid Earth</topic><topic>subpolar North Atlantic</topic><topic>Surface water</topic><topic>Surface Waves and Tides</topic><topic>Temperature anomalies</topic><topic>Temperature changes</topic><topic>Temperature effects</topic><topic>Theoretical Modeling</topic><topic>Time</topic><topic>Tsunamis and Storm Surges</topic><topic>Variability</topic><topic>Volcanic Effects</topic><topic>Volcanic Hazards and Risks</topic><topic>Volcano Monitoring</topic><topic>Volcano Seismology</topic><topic>Volcano/Climate Interactions</topic><topic>Volcanology</topic><topic>Water Cycles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fukai</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Kwon, Young‐Oh</creatorcontrib><creatorcontrib>Frankignoul, Claude</creatorcontrib><creatorcontrib>Luo, Yiyong</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fukai</au><au>Lu, Jian</au><au>Kwon, Young‐Oh</au><au>Frankignoul, Claude</au><au>Luo, Yiyong</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys Res Lett</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>49</volume><issue>20</issue><spage>e2022GL100136</spage><epage>n/a</epage><pages>e2022GL100136-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Atlantic Meridional Overturning Circulation (AMOC) exhibits interdecadal to multidecadal variability, yet the role of surface freshwater flux (FWF) variability in this AMOC variability remains unclear. This study isolates the contribution of FWF variability in modulating AMOC through a partially coupled experiment, in which the effect of the interactive FWF is disabled. It is demonstrated that the impact of the coupled FWF variability enhances the persistence of density and deep convection anomalies in the Labrador Sea (LS), thus lengthening the period of the AMOC oscillation on multidecadal timescale and suppressing its ∼30‐year periodicity. Further lead‐lag regressions illuminate that the more persistent LS density anomalies are maintained by two mechanisms: (a) The local temperature‐salinity coupling through the evaporation and (b) a downstream propagation along the East Greenland Current of the extra salinity anomaly due to the sea ice melting changes associated with an atmosphere forcing over the southern Greenland tip.
Plain Language Summary
The long‐term variability of Atlantic Meridional Overturning Circulation (AMOC) has a profound impact on the Earth's climate. However, the extent to which they are regulated by variability in surface freshwater fluxes (FWF) remains largely elusive. Here, we use a partial‐coupling technique to isolate the contribution of the FWF variability to the low‐frequency AMOC variability. In the absence of interactive FWF, the density anomalies important to the deep convection in the Labrador Sea (LS) are dominated by the temperature anomalies being advected around the subpolar gyre, with the salinity anomalies working to partially compensate the temperature effect. With interactive FWF, however, convection anomalies in the LS initialized by temperature changes are extended and reinforced by salinity changes and persist over a much longer time, thus extending the periodicity of the AMOC variability on multidecadal timescale. The more persistent deep convection in the LS is found to be achieved through a local and a remote mechanism. First, the local density anomalies initialized by temperature changes are extended and reinforced by evaporation‐induced salinity changes. In addition, salinity anomalies in the upstream Irminger Sea due to sea ice melting anomalies can propagate into LS to affect LS density anomalies.
Key Points
The surface freshwater flux (FWF) variability lengthens the period of the Atlantic Meridional Overturning Circulation (AMOC) variability
The contribution from salinity in generating deep convection is enhanced with the active FWF effect
Both local and remote effects of FWF are important in modulating AMOC low‐frequency variability</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>36582353</pmid><doi>10.1029/2022GL100136</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7038-1839</orcidid><orcidid>https://orcid.org/0000-0001-9448-9684</orcidid><orcidid>https://orcid.org/0000-0001-8245-6930</orcidid><orcidid>https://orcid.org/0000-0002-0687-9568</orcidid><orcidid>https://orcid.org/0000000206879568</orcidid><orcidid>https://orcid.org/0000000194489684</orcidid><orcidid>https://orcid.org/0000000182456930</orcidid><orcidid>https://orcid.org/0000000170381839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2022-10, Vol.49 (20), p.e2022GL100136-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786630 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | Abrupt/Rapid Climate Change Air/Sea Constituent Fluxes Air/Sea Interactions AMOC Anomalies Atlantic Meridional Overturning Circulation Atlantic Meridional Overturning Circulation (AMOC) Atmospheric Atmospheric Composition and Structure Atmospheric Effects Atmospheric forcing Atmospheric Processes Avalanches Benefit‐cost Analysis Biogeosciences buayancy flux Climate Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate Impact Climate Impacts Climate Variability Climatology Computational Geophysics Convection Coupled Models of the Climate System Coupling Cryosphere Decadal Ocean Variability Density Disaster Risk Analysis and Assessment Earth System Modeling Earthquake Ground Motions and Engineering Seismology Effusive Volcanism Environmental Sciences Evaporation Explosive Volcanism Freshwater freshwater flux General Circulation Geodesy and Gravity Geological GEOSCIENCES Global Change Global Change from Geodesy Gravity and Isostasy Hydrological Cycles and Budgets Hydrology Ice melting Impacts of Global Change Informatics Inland water environment internal variability Land/Atmosphere Interactions Marine Geology and Geophysics Mass Balance Melting Modeling Mud Volcanism Natural Hazards Numerical Modeling Numerical Solutions Ocean influence of Earth rotation Ocean Monitoring with Geodetic Techniques Ocean/Atmosphere Interactions Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanic Oceanography: General Oceanography: Physical Oceans Paleoceanography Periodicity Physical Modeling Policy Sciences Radio Oceanography Radio Science Regional Climate Change Regional Modeling Research Letter Risk Salinity Salinity effects Sea ice Sea Level Change Sea Level: Variations and Mean Seismology Solid Earth subpolar North Atlantic Surface water Surface Waves and Tides Temperature anomalies Temperature changes Temperature effects Theoretical Modeling Time Tsunamis and Storm Surges Variability Volcanic Effects Volcanic Hazards and Risks Volcano Monitoring Volcano Seismology Volcano/Climate Interactions Volcanology Water Cycles |
title | Freshwater Flux Variability Lengthens the Period of the Low‐Frequency AMOC Variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freshwater%20Flux%20Variability%20Lengthens%20the%20Period%20of%20the%20Low%E2%80%90Frequency%20AMOC%20Variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Liu,%20Fukai&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2022-10-28&rft.volume=49&rft.issue=20&rft.spage=e2022GL100136&rft.epage=n/a&rft.pages=e2022GL100136-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL100136&rft_dat=%3Cproquest_pubme%3E2729048733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729048733&rft_id=info:pmid/36582353&rfr_iscdi=true |