Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors
Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2022-10, Vol.49 (19), p.e2022GL098509-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | e2022GL098509 |
container_title | Geophysical research letters |
container_volume | 49 |
creator | Sheng, Y. Mordret, A. Sager, K. Brenguier, F. Boué, P. Rousset, B. Vernon, F. Higueret, Q. Ben‐Zion, Y. |
description | Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.
Plain Language Summary
We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake.
Key Points
We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains
We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014
We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap |
doi_str_mv | 10.1029/2022GL098509 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723563695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</originalsourceid><addsrcrecordid>eNp9ks1uEzEURkcIRNPCjjUawQYkAv4fe4MURTQFDUKiKVvL49zJuJrYxZ60yo5H4Bl5EhymRKULVr6yj4-vPt-ieIbRW4yIekcQIYsaKcmRelBMsGJsKhGqHhYThFSuSSWOiuOULhFCFFH8uDiigktCBJoU3efg3RCi8-vyHFzaOFt-gz5YN-zKeWf8GlI5szGkVA4dlOfGl5-MdX4I5anZ9kN5kfZ3l9E4_-vHzwV4iGaA1cG2jLAJMT0pHrWmT_D0dj0pLk4_LOdn0_rL4uN8Vk8Np0pNWSUaK41hlLfWIoxzyYlt8IopoRi2qoWGY2CqoZIh1FLeNBQ3gKWkBBp6UrwfvVfbZgMrC36IptdX0W1M3OlgnP73xLtOr8O1VpUUnFdZ8GIUhDQ4nXIQYDsbvAc7aCwV4oJl6PUIdffcZ7Na7_cQoyInTK5xZl_ddhTD9y2kQW9cstD3xkPYJk0qrhQXUuzffnkPvQzb6HNemSKUCyoUz9SbkfrzLRHaQwcY6f1M6LszkfHndxM5wH-HIANkBG5cD7v_yvTiay2YlIr-BoTTwB8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723563695</pqid></control><display><type>article</type><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y.</creator><creatorcontrib>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y. ; Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><description>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.
Plain Language Summary
We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake.
Key Points
We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains
We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014
We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL098509</identifier><identifier>PMID: 36582260</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Anza seismic gap ; Body Waves ; body‐wave correlation functions ; Calcium signalling ; Change detection ; Continental Crust ; Earthquake Dynamics ; Earthquake Interaction, Forecasting, and Prediction ; Earthquake Source Observations ; Earthquakes ; Estimation and Forecasting ; Exploration Geophysics ; Fault lines ; Fault zones ; Forecasting ; Freight trains ; Geodesy and Gravity ; Geology ; GEOSCIENCES ; Gravity anomalies and Earth structure ; Gravity Methods ; hidden slow‐slip event ; Hydrology ; Informatics ; Interferometry ; Ionosphere ; Ionospheric Physics ; long‐base seismic interferometry ; Magnetospheric Physics ; Mathematical Geophysics ; Microseisms ; Monitoring, Forecasting, Prediction ; Natural Hazards ; Numerical simulations ; Ocean Predictability and Prediction ; Oceanography: General ; Perturbation ; Policy ; Policy Sciences ; Prediction ; Probabilistic Forecasting ; Radio Science ; Research Letter ; Satellite Geodesy: Results ; Sciences of the Universe ; Seismic activity ; Seismic Cycle Related Deformations ; Seismic velocities ; Seismicity and Tectonics ; Seismology ; Signal monitoring ; Slip ; Solid Earth ; Space Weather ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Subduction Zones ; Surface waves ; Tectonic Deformation ; Tectonic processes ; Tectonics ; Temporal variations ; Time Variable Gravity ; train‐generated seismic energy ; Transient Deformation ; Tremors ; Velocity</subject><ispartof>Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL098509-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</citedby><cites>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</cites><orcidid>0000-0001-9153-4048 ; 0000-0002-9379-4000 ; 0000-0002-8151-8762 ; 0000-0002-9602-2014 ; 0000-0002-7998-5417 ; 0000-0001-8684-7613 ; 0000-0001-9304-0498 ; 0000-0002-2695-3366 ; 0000-0002-6109-0084 ; 0000000296022014 ; 0000000293794000 ; 0000000193040498 ; 0000000186847613 ; 0000000226953366 ; 0000000261090084 ; 0000000279985417 ; 0000000281518762 ; 0000000191534048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL098509$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL098509$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36582260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04362262$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1890564$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheng, Y.</creatorcontrib><creatorcontrib>Mordret, A.</creatorcontrib><creatorcontrib>Sager, K.</creatorcontrib><creatorcontrib>Brenguier, F.</creatorcontrib><creatorcontrib>Boué, P.</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>Vernon, F.</creatorcontrib><creatorcontrib>Higueret, Q.</creatorcontrib><creatorcontrib>Ben‐Zion, Y.</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><title>Geophysical research letters</title><addtitle>Geophys Res Lett</addtitle><description>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.
Plain Language Summary
We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake.
Key Points
We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains
We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014
We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</description><subject>Anza seismic gap</subject><subject>Body Waves</subject><subject>body‐wave correlation functions</subject><subject>Calcium signalling</subject><subject>Change detection</subject><subject>Continental Crust</subject><subject>Earthquake Dynamics</subject><subject>Earthquake Interaction, Forecasting, and Prediction</subject><subject>Earthquake Source Observations</subject><subject>Earthquakes</subject><subject>Estimation and Forecasting</subject><subject>Exploration Geophysics</subject><subject>Fault lines</subject><subject>Fault zones</subject><subject>Forecasting</subject><subject>Freight trains</subject><subject>Geodesy and Gravity</subject><subject>Geology</subject><subject>GEOSCIENCES</subject><subject>Gravity anomalies and Earth structure</subject><subject>Gravity Methods</subject><subject>hidden slow‐slip event</subject><subject>Hydrology</subject><subject>Informatics</subject><subject>Interferometry</subject><subject>Ionosphere</subject><subject>Ionospheric Physics</subject><subject>long‐base seismic interferometry</subject><subject>Magnetospheric Physics</subject><subject>Mathematical Geophysics</subject><subject>Microseisms</subject><subject>Monitoring, Forecasting, Prediction</subject><subject>Natural Hazards</subject><subject>Numerical simulations</subject><subject>Ocean Predictability and Prediction</subject><subject>Oceanography: General</subject><subject>Perturbation</subject><subject>Policy</subject><subject>Policy Sciences</subject><subject>Prediction</subject><subject>Probabilistic Forecasting</subject><subject>Radio Science</subject><subject>Research Letter</subject><subject>Satellite Geodesy: Results</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismic Cycle Related Deformations</subject><subject>Seismic velocities</subject><subject>Seismicity and Tectonics</subject><subject>Seismology</subject><subject>Signal monitoring</subject><subject>Slip</subject><subject>Solid Earth</subject><subject>Space Weather</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Subduction Zones</subject><subject>Surface waves</subject><subject>Tectonic Deformation</subject><subject>Tectonic processes</subject><subject>Tectonics</subject><subject>Temporal variations</subject><subject>Time Variable Gravity</subject><subject>train‐generated seismic energy</subject><subject>Transient Deformation</subject><subject>Tremors</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9ks1uEzEURkcIRNPCjjUawQYkAv4fe4MURTQFDUKiKVvL49zJuJrYxZ60yo5H4Bl5EhymRKULVr6yj4-vPt-ieIbRW4yIekcQIYsaKcmRelBMsGJsKhGqHhYThFSuSSWOiuOULhFCFFH8uDiigktCBJoU3efg3RCi8-vyHFzaOFt-gz5YN-zKeWf8GlI5szGkVA4dlOfGl5-MdX4I5anZ9kN5kfZ3l9E4_-vHzwV4iGaA1cG2jLAJMT0pHrWmT_D0dj0pLk4_LOdn0_rL4uN8Vk8Np0pNWSUaK41hlLfWIoxzyYlt8IopoRi2qoWGY2CqoZIh1FLeNBQ3gKWkBBp6UrwfvVfbZgMrC36IptdX0W1M3OlgnP73xLtOr8O1VpUUnFdZ8GIUhDQ4nXIQYDsbvAc7aCwV4oJl6PUIdffcZ7Na7_cQoyInTK5xZl_ddhTD9y2kQW9cstD3xkPYJk0qrhQXUuzffnkPvQzb6HNemSKUCyoUz9SbkfrzLRHaQwcY6f1M6LszkfHndxM5wH-HIANkBG5cD7v_yvTiay2YlIr-BoTTwB8</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Sheng, Y.</creator><creator>Mordret, A.</creator><creator>Sager, K.</creator><creator>Brenguier, F.</creator><creator>Boué, P.</creator><creator>Rousset, B.</creator><creator>Vernon, F.</creator><creator>Higueret, Q.</creator><creator>Ben‐Zion, Y.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><general>American Geophysical Union (AGU)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9153-4048</orcidid><orcidid>https://orcid.org/0000-0002-9379-4000</orcidid><orcidid>https://orcid.org/0000-0002-8151-8762</orcidid><orcidid>https://orcid.org/0000-0002-9602-2014</orcidid><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid><orcidid>https://orcid.org/0000-0001-8684-7613</orcidid><orcidid>https://orcid.org/0000-0001-9304-0498</orcidid><orcidid>https://orcid.org/0000-0002-2695-3366</orcidid><orcidid>https://orcid.org/0000-0002-6109-0084</orcidid><orcidid>https://orcid.org/0000000296022014</orcidid><orcidid>https://orcid.org/0000000293794000</orcidid><orcidid>https://orcid.org/0000000193040498</orcidid><orcidid>https://orcid.org/0000000186847613</orcidid><orcidid>https://orcid.org/0000000226953366</orcidid><orcidid>https://orcid.org/0000000261090084</orcidid><orcidid>https://orcid.org/0000000279985417</orcidid><orcidid>https://orcid.org/0000000281518762</orcidid><orcidid>https://orcid.org/0000000191534048</orcidid></search><sort><creationdate>20221016</creationdate><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><author>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anza seismic gap</topic><topic>Body Waves</topic><topic>body‐wave correlation functions</topic><topic>Calcium signalling</topic><topic>Change detection</topic><topic>Continental Crust</topic><topic>Earthquake Dynamics</topic><topic>Earthquake Interaction, Forecasting, and Prediction</topic><topic>Earthquake Source Observations</topic><topic>Earthquakes</topic><topic>Estimation and Forecasting</topic><topic>Exploration Geophysics</topic><topic>Fault lines</topic><topic>Fault zones</topic><topic>Forecasting</topic><topic>Freight trains</topic><topic>Geodesy and Gravity</topic><topic>Geology</topic><topic>GEOSCIENCES</topic><topic>Gravity anomalies and Earth structure</topic><topic>Gravity Methods</topic><topic>hidden slow‐slip event</topic><topic>Hydrology</topic><topic>Informatics</topic><topic>Interferometry</topic><topic>Ionosphere</topic><topic>Ionospheric Physics</topic><topic>long‐base seismic interferometry</topic><topic>Magnetospheric Physics</topic><topic>Mathematical Geophysics</topic><topic>Microseisms</topic><topic>Monitoring, Forecasting, Prediction</topic><topic>Natural Hazards</topic><topic>Numerical simulations</topic><topic>Ocean Predictability and Prediction</topic><topic>Oceanography: General</topic><topic>Perturbation</topic><topic>Policy</topic><topic>Policy Sciences</topic><topic>Prediction</topic><topic>Probabilistic Forecasting</topic><topic>Radio Science</topic><topic>Research Letter</topic><topic>Satellite Geodesy: Results</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismic Cycle Related Deformations</topic><topic>Seismic velocities</topic><topic>Seismicity and Tectonics</topic><topic>Seismology</topic><topic>Signal monitoring</topic><topic>Slip</topic><topic>Solid Earth</topic><topic>Space Weather</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Subduction Zones</topic><topic>Surface waves</topic><topic>Tectonic Deformation</topic><topic>Tectonic processes</topic><topic>Tectonics</topic><topic>Temporal variations</topic><topic>Time Variable Gravity</topic><topic>train‐generated seismic energy</topic><topic>Transient Deformation</topic><topic>Tremors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Y.</creatorcontrib><creatorcontrib>Mordret, A.</creatorcontrib><creatorcontrib>Sager, K.</creatorcontrib><creatorcontrib>Brenguier, F.</creatorcontrib><creatorcontrib>Boué, P.</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>Vernon, F.</creatorcontrib><creatorcontrib>Higueret, Q.</creatorcontrib><creatorcontrib>Ben‐Zion, Y.</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Y.</au><au>Mordret, A.</au><au>Sager, K.</au><au>Brenguier, F.</au><au>Boué, P.</au><au>Rousset, B.</au><au>Vernon, F.</au><au>Higueret, Q.</au><au>Ben‐Zion, Y.</au><aucorp>Univ. of Southern California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys Res Lett</addtitle><date>2022-10-16</date><risdate>2022</risdate><volume>49</volume><issue>19</issue><spage>e2022GL098509</spage><epage>n/a</epage><pages>e2022GL098509-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure.
Plain Language Summary
We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake.
Key Points
We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains
We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014
We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>36582260</pmid><doi>10.1029/2022GL098509</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9153-4048</orcidid><orcidid>https://orcid.org/0000-0002-9379-4000</orcidid><orcidid>https://orcid.org/0000-0002-8151-8762</orcidid><orcidid>https://orcid.org/0000-0002-9602-2014</orcidid><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid><orcidid>https://orcid.org/0000-0001-8684-7613</orcidid><orcidid>https://orcid.org/0000-0001-9304-0498</orcidid><orcidid>https://orcid.org/0000-0002-2695-3366</orcidid><orcidid>https://orcid.org/0000-0002-6109-0084</orcidid><orcidid>https://orcid.org/0000000296022014</orcidid><orcidid>https://orcid.org/0000000293794000</orcidid><orcidid>https://orcid.org/0000000193040498</orcidid><orcidid>https://orcid.org/0000000186847613</orcidid><orcidid>https://orcid.org/0000000226953366</orcidid><orcidid>https://orcid.org/0000000261090084</orcidid><orcidid>https://orcid.org/0000000279985417</orcidid><orcidid>https://orcid.org/0000000281518762</orcidid><orcidid>https://orcid.org/0000000191534048</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL098509-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786557 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Anza seismic gap Body Waves body‐wave correlation functions Calcium signalling Change detection Continental Crust Earthquake Dynamics Earthquake Interaction, Forecasting, and Prediction Earthquake Source Observations Earthquakes Estimation and Forecasting Exploration Geophysics Fault lines Fault zones Forecasting Freight trains Geodesy and Gravity Geology GEOSCIENCES Gravity anomalies and Earth structure Gravity Methods hidden slow‐slip event Hydrology Informatics Interferometry Ionosphere Ionospheric Physics long‐base seismic interferometry Magnetospheric Physics Mathematical Geophysics Microseisms Monitoring, Forecasting, Prediction Natural Hazards Numerical simulations Ocean Predictability and Prediction Oceanography: General Perturbation Policy Policy Sciences Prediction Probabilistic Forecasting Radio Science Research Letter Satellite Geodesy: Results Sciences of the Universe Seismic activity Seismic Cycle Related Deformations Seismic velocities Seismicity and Tectonics Seismology Signal monitoring Slip Solid Earth Space Weather Spatial discrimination Spatial distribution Spatial resolution Subduction Zones Surface waves Tectonic Deformation Tectonic processes Tectonics Temporal variations Time Variable Gravity train‐generated seismic energy Transient Deformation Tremors Velocity |
title | Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Seismic%20Velocity%20Changes%20Across%20the%20San%20Jacinto%20Fault%20Using%20Train%E2%80%90Generated%20Seismic%20Tremors&rft.jtitle=Geophysical%20research%20letters&rft.au=Sheng,%20Y.&rft.aucorp=Univ.%20of%20Southern%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2022-10-16&rft.volume=49&rft.issue=19&rft.spage=e2022GL098509&rft.epage=n/a&rft.pages=e2022GL098509-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL098509&rft_dat=%3Cproquest_pubme%3E2723563695%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723563695&rft_id=info:pmid/36582260&rfr_iscdi=true |