Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors

Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-10, Vol.49 (19), p.e2022GL098509-n/a
Hauptverfasser: Sheng, Y., Mordret, A., Sager, K., Brenguier, F., Boué, P., Rousset, B., Vernon, F., Higueret, Q., Ben‐Zion, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e2022GL098509
container_title Geophysical research letters
container_volume 49
creator Sheng, Y.
Mordret, A.
Sager, K.
Brenguier, F.
Boué, P.
Rousset, B.
Vernon, F.
Higueret, Q.
Ben‐Zion, Y.
description Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure. Plain Language Summary We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake. Key Points We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014 We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap
doi_str_mv 10.1029/2022GL098509
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723563695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</originalsourceid><addsrcrecordid>eNp9ks1uEzEURkcIRNPCjjUawQYkAv4fe4MURTQFDUKiKVvL49zJuJrYxZ60yo5H4Bl5EhymRKULVr6yj4-vPt-ieIbRW4yIekcQIYsaKcmRelBMsGJsKhGqHhYThFSuSSWOiuOULhFCFFH8uDiigktCBJoU3efg3RCi8-vyHFzaOFt-gz5YN-zKeWf8GlI5szGkVA4dlOfGl5-MdX4I5anZ9kN5kfZ3l9E4_-vHzwV4iGaA1cG2jLAJMT0pHrWmT_D0dj0pLk4_LOdn0_rL4uN8Vk8Np0pNWSUaK41hlLfWIoxzyYlt8IopoRi2qoWGY2CqoZIh1FLeNBQ3gKWkBBp6UrwfvVfbZgMrC36IptdX0W1M3OlgnP73xLtOr8O1VpUUnFdZ8GIUhDQ4nXIQYDsbvAc7aCwV4oJl6PUIdffcZ7Na7_cQoyInTK5xZl_ddhTD9y2kQW9cstD3xkPYJk0qrhQXUuzffnkPvQzb6HNemSKUCyoUz9SbkfrzLRHaQwcY6f1M6LszkfHndxM5wH-HIANkBG5cD7v_yvTiay2YlIr-BoTTwB8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723563695</pqid></control><display><type>article</type><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y.</creator><creatorcontrib>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y. ; Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><description>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure. Plain Language Summary We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake. Key Points We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014 We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL098509</identifier><identifier>PMID: 36582260</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Anza seismic gap ; Body Waves ; body‐wave correlation functions ; Calcium signalling ; Change detection ; Continental Crust ; Earthquake Dynamics ; Earthquake Interaction, Forecasting, and Prediction ; Earthquake Source Observations ; Earthquakes ; Estimation and Forecasting ; Exploration Geophysics ; Fault lines ; Fault zones ; Forecasting ; Freight trains ; Geodesy and Gravity ; Geology ; GEOSCIENCES ; Gravity anomalies and Earth structure ; Gravity Methods ; hidden slow‐slip event ; Hydrology ; Informatics ; Interferometry ; Ionosphere ; Ionospheric Physics ; long‐base seismic interferometry ; Magnetospheric Physics ; Mathematical Geophysics ; Microseisms ; Monitoring, Forecasting, Prediction ; Natural Hazards ; Numerical simulations ; Ocean Predictability and Prediction ; Oceanography: General ; Perturbation ; Policy ; Policy Sciences ; Prediction ; Probabilistic Forecasting ; Radio Science ; Research Letter ; Satellite Geodesy: Results ; Sciences of the Universe ; Seismic activity ; Seismic Cycle Related Deformations ; Seismic velocities ; Seismicity and Tectonics ; Seismology ; Signal monitoring ; Slip ; Solid Earth ; Space Weather ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Subduction Zones ; Surface waves ; Tectonic Deformation ; Tectonic processes ; Tectonics ; Temporal variations ; Time Variable Gravity ; train‐generated seismic energy ; Transient Deformation ; Tremors ; Velocity</subject><ispartof>Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL098509-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</citedby><cites>FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</cites><orcidid>0000-0001-9153-4048 ; 0000-0002-9379-4000 ; 0000-0002-8151-8762 ; 0000-0002-9602-2014 ; 0000-0002-7998-5417 ; 0000-0001-8684-7613 ; 0000-0001-9304-0498 ; 0000-0002-2695-3366 ; 0000-0002-6109-0084 ; 0000000296022014 ; 0000000293794000 ; 0000000193040498 ; 0000000186847613 ; 0000000226953366 ; 0000000261090084 ; 0000000279985417 ; 0000000281518762 ; 0000000191534048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL098509$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL098509$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36582260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04362262$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1890564$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheng, Y.</creatorcontrib><creatorcontrib>Mordret, A.</creatorcontrib><creatorcontrib>Sager, K.</creatorcontrib><creatorcontrib>Brenguier, F.</creatorcontrib><creatorcontrib>Boué, P.</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>Vernon, F.</creatorcontrib><creatorcontrib>Higueret, Q.</creatorcontrib><creatorcontrib>Ben‐Zion, Y.</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><title>Geophysical research letters</title><addtitle>Geophys Res Lett</addtitle><description>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure. Plain Language Summary We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake. Key Points We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014 We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</description><subject>Anza seismic gap</subject><subject>Body Waves</subject><subject>body‐wave correlation functions</subject><subject>Calcium signalling</subject><subject>Change detection</subject><subject>Continental Crust</subject><subject>Earthquake Dynamics</subject><subject>Earthquake Interaction, Forecasting, and Prediction</subject><subject>Earthquake Source Observations</subject><subject>Earthquakes</subject><subject>Estimation and Forecasting</subject><subject>Exploration Geophysics</subject><subject>Fault lines</subject><subject>Fault zones</subject><subject>Forecasting</subject><subject>Freight trains</subject><subject>Geodesy and Gravity</subject><subject>Geology</subject><subject>GEOSCIENCES</subject><subject>Gravity anomalies and Earth structure</subject><subject>Gravity Methods</subject><subject>hidden slow‐slip event</subject><subject>Hydrology</subject><subject>Informatics</subject><subject>Interferometry</subject><subject>Ionosphere</subject><subject>Ionospheric Physics</subject><subject>long‐base seismic interferometry</subject><subject>Magnetospheric Physics</subject><subject>Mathematical Geophysics</subject><subject>Microseisms</subject><subject>Monitoring, Forecasting, Prediction</subject><subject>Natural Hazards</subject><subject>Numerical simulations</subject><subject>Ocean Predictability and Prediction</subject><subject>Oceanography: General</subject><subject>Perturbation</subject><subject>Policy</subject><subject>Policy Sciences</subject><subject>Prediction</subject><subject>Probabilistic Forecasting</subject><subject>Radio Science</subject><subject>Research Letter</subject><subject>Satellite Geodesy: Results</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismic Cycle Related Deformations</subject><subject>Seismic velocities</subject><subject>Seismicity and Tectonics</subject><subject>Seismology</subject><subject>Signal monitoring</subject><subject>Slip</subject><subject>Solid Earth</subject><subject>Space Weather</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Subduction Zones</subject><subject>Surface waves</subject><subject>Tectonic Deformation</subject><subject>Tectonic processes</subject><subject>Tectonics</subject><subject>Temporal variations</subject><subject>Time Variable Gravity</subject><subject>train‐generated seismic energy</subject><subject>Transient Deformation</subject><subject>Tremors</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9ks1uEzEURkcIRNPCjjUawQYkAv4fe4MURTQFDUKiKVvL49zJuJrYxZ60yo5H4Bl5EhymRKULVr6yj4-vPt-ieIbRW4yIekcQIYsaKcmRelBMsGJsKhGqHhYThFSuSSWOiuOULhFCFFH8uDiigktCBJoU3efg3RCi8-vyHFzaOFt-gz5YN-zKeWf8GlI5szGkVA4dlOfGl5-MdX4I5anZ9kN5kfZ3l9E4_-vHzwV4iGaA1cG2jLAJMT0pHrWmT_D0dj0pLk4_LOdn0_rL4uN8Vk8Np0pNWSUaK41hlLfWIoxzyYlt8IopoRi2qoWGY2CqoZIh1FLeNBQ3gKWkBBp6UrwfvVfbZgMrC36IptdX0W1M3OlgnP73xLtOr8O1VpUUnFdZ8GIUhDQ4nXIQYDsbvAc7aCwV4oJl6PUIdffcZ7Na7_cQoyInTK5xZl_ddhTD9y2kQW9cstD3xkPYJk0qrhQXUuzffnkPvQzb6HNemSKUCyoUz9SbkfrzLRHaQwcY6f1M6LszkfHndxM5wH-HIANkBG5cD7v_yvTiay2YlIr-BoTTwB8</recordid><startdate>20221016</startdate><enddate>20221016</enddate><creator>Sheng, Y.</creator><creator>Mordret, A.</creator><creator>Sager, K.</creator><creator>Brenguier, F.</creator><creator>Boué, P.</creator><creator>Rousset, B.</creator><creator>Vernon, F.</creator><creator>Higueret, Q.</creator><creator>Ben‐Zion, Y.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><general>American Geophysical Union (AGU)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9153-4048</orcidid><orcidid>https://orcid.org/0000-0002-9379-4000</orcidid><orcidid>https://orcid.org/0000-0002-8151-8762</orcidid><orcidid>https://orcid.org/0000-0002-9602-2014</orcidid><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid><orcidid>https://orcid.org/0000-0001-8684-7613</orcidid><orcidid>https://orcid.org/0000-0001-9304-0498</orcidid><orcidid>https://orcid.org/0000-0002-2695-3366</orcidid><orcidid>https://orcid.org/0000-0002-6109-0084</orcidid><orcidid>https://orcid.org/0000000296022014</orcidid><orcidid>https://orcid.org/0000000293794000</orcidid><orcidid>https://orcid.org/0000000193040498</orcidid><orcidid>https://orcid.org/0000000186847613</orcidid><orcidid>https://orcid.org/0000000226953366</orcidid><orcidid>https://orcid.org/0000000261090084</orcidid><orcidid>https://orcid.org/0000000279985417</orcidid><orcidid>https://orcid.org/0000000281518762</orcidid><orcidid>https://orcid.org/0000000191534048</orcidid></search><sort><creationdate>20221016</creationdate><title>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</title><author>Sheng, Y. ; Mordret, A. ; Sager, K. ; Brenguier, F. ; Boué, P. ; Rousset, B. ; Vernon, F. ; Higueret, Q. ; Ben‐Zion, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5399-476bc8aa435fcc011aa452cb1d496941c9feb51e49b38400f35bb31be18832eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anza seismic gap</topic><topic>Body Waves</topic><topic>body‐wave correlation functions</topic><topic>Calcium signalling</topic><topic>Change detection</topic><topic>Continental Crust</topic><topic>Earthquake Dynamics</topic><topic>Earthquake Interaction, Forecasting, and Prediction</topic><topic>Earthquake Source Observations</topic><topic>Earthquakes</topic><topic>Estimation and Forecasting</topic><topic>Exploration Geophysics</topic><topic>Fault lines</topic><topic>Fault zones</topic><topic>Forecasting</topic><topic>Freight trains</topic><topic>Geodesy and Gravity</topic><topic>Geology</topic><topic>GEOSCIENCES</topic><topic>Gravity anomalies and Earth structure</topic><topic>Gravity Methods</topic><topic>hidden slow‐slip event</topic><topic>Hydrology</topic><topic>Informatics</topic><topic>Interferometry</topic><topic>Ionosphere</topic><topic>Ionospheric Physics</topic><topic>long‐base seismic interferometry</topic><topic>Magnetospheric Physics</topic><topic>Mathematical Geophysics</topic><topic>Microseisms</topic><topic>Monitoring, Forecasting, Prediction</topic><topic>Natural Hazards</topic><topic>Numerical simulations</topic><topic>Ocean Predictability and Prediction</topic><topic>Oceanography: General</topic><topic>Perturbation</topic><topic>Policy</topic><topic>Policy Sciences</topic><topic>Prediction</topic><topic>Probabilistic Forecasting</topic><topic>Radio Science</topic><topic>Research Letter</topic><topic>Satellite Geodesy: Results</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismic Cycle Related Deformations</topic><topic>Seismic velocities</topic><topic>Seismicity and Tectonics</topic><topic>Seismology</topic><topic>Signal monitoring</topic><topic>Slip</topic><topic>Solid Earth</topic><topic>Space Weather</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Subduction Zones</topic><topic>Surface waves</topic><topic>Tectonic Deformation</topic><topic>Tectonic processes</topic><topic>Tectonics</topic><topic>Temporal variations</topic><topic>Time Variable Gravity</topic><topic>train‐generated seismic energy</topic><topic>Transient Deformation</topic><topic>Tremors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Y.</creatorcontrib><creatorcontrib>Mordret, A.</creatorcontrib><creatorcontrib>Sager, K.</creatorcontrib><creatorcontrib>Brenguier, F.</creatorcontrib><creatorcontrib>Boué, P.</creatorcontrib><creatorcontrib>Rousset, B.</creatorcontrib><creatorcontrib>Vernon, F.</creatorcontrib><creatorcontrib>Higueret, Q.</creatorcontrib><creatorcontrib>Ben‐Zion, Y.</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Y.</au><au>Mordret, A.</au><au>Sager, K.</au><au>Brenguier, F.</au><au>Boué, P.</au><au>Rousset, B.</au><au>Vernon, F.</au><au>Higueret, Q.</au><au>Ben‐Zion, Y.</au><aucorp>Univ. of Southern California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys Res Lett</addtitle><date>2022-10-16</date><risdate>2022</risdate><volume>49</volume><issue>19</issue><spage>e2022GL098509</spage><epage>n/a</epage><pages>e2022GL098509-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Microseismic noise has been used for seismic velocity monitoring. However, such signals are dominated by low‐frequency surface waves that are not ideal for detecting changes associated with small tectonic processes. Here we show that it is possible to extract stable, high‐frequency body waves using seismic tremors generated by freight trains. Such body waves allow us to focus on small velocity perturbations in the crust with high spatial resolution. We report on 10 years of seismic velocity temporal changes at the San Jacinto Fault. We observe and map a two‐month‐long episode of velocity changes with complex spatial distribution and interpret the velocity perturbation as produced by a previously undocumented slow‐slip event. We verify the hypothesis through numerical simulations and locate this event along a fault segment believed to be locked. Such a slow‐slip event stresses its surroundings and may trigger a major earthquake on a fault section approaching failure. Plain Language Summary We turn seismic noise generated by freight trains into repeatable measurements of body waves that dive through the core of the San Jacinto Fault zone, CA. These body waves, which are typically hard to extract with standard approaches, are used to continuously monitor seismic velocity changes potentially associated with fault movements. During the 10‐year monitoring period, we observe a 2‐month‐long velocity perturbation in 2014 near the Anza seismic gap. We interpret this seismic velocity change as the result of a previously unknown slow‐slip event that occurred at the southern end of the seismic gap, at the transition to the very seismically active area. This slow‐slip event is below the geodetic detection threshold but increases the seismic stress in the seismic gap large enough to possibly trigger a big earthquake. Key Points We extract stable station‐station body‐wave correlation functions using seismic energy generated by freight trains We perform 10‐year seismic velocity monitoring around the San Jacinto Fault and observe a 2‐month‐long velocity perturbation in 2014 We interpret this velocity change as caused by a previously unreported slow‐slip event at the southern edge of the Anza seismic gap</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36582260</pmid><doi>10.1029/2022GL098509</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9153-4048</orcidid><orcidid>https://orcid.org/0000-0002-9379-4000</orcidid><orcidid>https://orcid.org/0000-0002-8151-8762</orcidid><orcidid>https://orcid.org/0000-0002-9602-2014</orcidid><orcidid>https://orcid.org/0000-0002-7998-5417</orcidid><orcidid>https://orcid.org/0000-0001-8684-7613</orcidid><orcidid>https://orcid.org/0000-0001-9304-0498</orcidid><orcidid>https://orcid.org/0000-0002-2695-3366</orcidid><orcidid>https://orcid.org/0000-0002-6109-0084</orcidid><orcidid>https://orcid.org/0000000296022014</orcidid><orcidid>https://orcid.org/0000000293794000</orcidid><orcidid>https://orcid.org/0000000193040498</orcidid><orcidid>https://orcid.org/0000000186847613</orcidid><orcidid>https://orcid.org/0000000226953366</orcidid><orcidid>https://orcid.org/0000000261090084</orcidid><orcidid>https://orcid.org/0000000279985417</orcidid><orcidid>https://orcid.org/0000000281518762</orcidid><orcidid>https://orcid.org/0000000191534048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-10, Vol.49 (19), p.e2022GL098509-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9786557
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anza seismic gap
Body Waves
body‐wave correlation functions
Calcium signalling
Change detection
Continental Crust
Earthquake Dynamics
Earthquake Interaction, Forecasting, and Prediction
Earthquake Source Observations
Earthquakes
Estimation and Forecasting
Exploration Geophysics
Fault lines
Fault zones
Forecasting
Freight trains
Geodesy and Gravity
Geology
GEOSCIENCES
Gravity anomalies and Earth structure
Gravity Methods
hidden slow‐slip event
Hydrology
Informatics
Interferometry
Ionosphere
Ionospheric Physics
long‐base seismic interferometry
Magnetospheric Physics
Mathematical Geophysics
Microseisms
Monitoring, Forecasting, Prediction
Natural Hazards
Numerical simulations
Ocean Predictability and Prediction
Oceanography: General
Perturbation
Policy
Policy Sciences
Prediction
Probabilistic Forecasting
Radio Science
Research Letter
Satellite Geodesy: Results
Sciences of the Universe
Seismic activity
Seismic Cycle Related Deformations
Seismic velocities
Seismicity and Tectonics
Seismology
Signal monitoring
Slip
Solid Earth
Space Weather
Spatial discrimination
Spatial distribution
Spatial resolution
Subduction Zones
Surface waves
Tectonic Deformation
Tectonic processes
Tectonics
Temporal variations
Time Variable Gravity
train‐generated seismic energy
Transient Deformation
Tremors
Velocity
title Monitoring Seismic Velocity Changes Across the San Jacinto Fault Using Train‐Generated Seismic Tremors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20Seismic%20Velocity%20Changes%20Across%20the%20San%20Jacinto%20Fault%20Using%20Train%E2%80%90Generated%20Seismic%20Tremors&rft.jtitle=Geophysical%20research%20letters&rft.au=Sheng,%20Y.&rft.aucorp=Univ.%20of%20Southern%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2022-10-16&rft.volume=49&rft.issue=19&rft.spage=e2022GL098509&rft.epage=n/a&rft.pages=e2022GL098509-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL098509&rft_dat=%3Cproquest_pubme%3E2723563695%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723563695&rft_id=info:pmid/36582260&rfr_iscdi=true