The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy

The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-12, Vol.15 (24), p.8844
Hauptverfasser: Samuel, Agnes M, Zedan, Yasser, Elsharkawi, Ehab A, Abdelaziz, Mohamed H, Samuel, Fawzy H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 8844
container_title Materials
container_volume 15
creator Samuel, Agnes M
Zedan, Yasser
Elsharkawi, Ehab A
Abdelaziz, Mohamed H
Samuel, Fawzy H
description The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.
doi_str_mv 10.3390/ma15248844
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9785003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742707</galeid><sourcerecordid>A745742707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</originalsourceid><addsrcrecordid>eNpdkV1vFCEUhomxsc3aG3-AIfHGmEyFgRngxmSzWtukRmPWa8IyhynNDKwwY9J_L9NtaytcQA7P-3I-EHpDyRljinwcDW1qLiXnL9AJVaqtqOL85ZP7MTrN-YaUxRiVtXqFjlnbNG3bkBPktteAf8YBcHT4W483MUwQJmxCh9e9Dz3eJjDTuMRiwFOhtxCyL4IFOTeT72fAP1LcQ5o85MXns4dqY_KEmSR4PQzx9jU6cmbIcHp_rtCv8y_bzUV19f3r5WZ9VVnOm6lSRnJjOLQgdoqWkGt2qt5RSTrHa6uME9aajlHiaKc4YZ2rwbSgrDFSWsdW6NPBdz_vRuhsSTuZQe-TH0261dF4_fwl-Gvdxz9aCdksDVqh9_cGKf6eIU969NnCMJgAcc66Fo2kRBJaF_Tdf-hNnFMo5S1UKwTnRBTq7ED1ZgDtg4vlX1t2B6O3MYArvdRrwRvBa3En-HAQ2BRzTuAes6dELyPX_0Ze4LdP631EHwbM_gJDpKV0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756774407</pqid></control><display><type>article</type><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</creator><creatorcontrib>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</creatorcontrib><description>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15248844</identifier><identifier>PMID: 36556650</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging (metallurgy) ; Alloys ; Aluminum base alloys ; Automobile industry ; Bending fatigue ; Casting alloys ; Crack initiation ; Crack propagation ; Data acquisition systems ; Die casting ; Elastic limit ; Elongation ; Failure mechanisms ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue strength ; Fatigue testing machines ; Fatigue tests ; Guinier Preston zone ; Heat treatment ; Inclusions ; Magnesium ; Materials ; Mechanical properties ; Metal fatigue ; Oxide coatings ; Parameters ; Propagation ; Solidification ; Specialty metals industry ; Surface defects ; Tensile properties ; Tensile strength ; Tensile tests</subject><ispartof>Materials, 2022-12, Vol.15 (24), p.8844</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</citedby><cites>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</cites><orcidid>0000-0001-7222-8694 ; 0000-0001-5821-9310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36556650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samuel, Agnes M</creatorcontrib><creatorcontrib>Zedan, Yasser</creatorcontrib><creatorcontrib>Elsharkawi, Ehab A</creatorcontrib><creatorcontrib>Abdelaziz, Mohamed H</creatorcontrib><creatorcontrib>Samuel, Fawzy H</creatorcontrib><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</description><subject>Aging (metallurgy)</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Automobile industry</subject><subject>Bending fatigue</subject><subject>Casting alloys</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Data acquisition systems</subject><subject>Die casting</subject><subject>Elastic limit</subject><subject>Elongation</subject><subject>Failure mechanisms</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Guinier Preston zone</subject><subject>Heat treatment</subject><subject>Inclusions</subject><subject>Magnesium</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Oxide coatings</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Surface defects</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1vFCEUhomxsc3aG3-AIfHGmEyFgRngxmSzWtukRmPWa8IyhynNDKwwY9J_L9NtaytcQA7P-3I-EHpDyRljinwcDW1qLiXnL9AJVaqtqOL85ZP7MTrN-YaUxRiVtXqFjlnbNG3bkBPktteAf8YBcHT4W483MUwQJmxCh9e9Dz3eJjDTuMRiwFOhtxCyL4IFOTeT72fAP1LcQ5o85MXns4dqY_KEmSR4PQzx9jU6cmbIcHp_rtCv8y_bzUV19f3r5WZ9VVnOm6lSRnJjOLQgdoqWkGt2qt5RSTrHa6uME9aajlHiaKc4YZ2rwbSgrDFSWsdW6NPBdz_vRuhsSTuZQe-TH0261dF4_fwl-Gvdxz9aCdksDVqh9_cGKf6eIU969NnCMJgAcc66Fo2kRBJaF_Tdf-hNnFMo5S1UKwTnRBTq7ED1ZgDtg4vlX1t2B6O3MYArvdRrwRvBa3En-HAQ2BRzTuAes6dELyPX_0Ze4LdP631EHwbM_gJDpKV0</recordid><startdate>20221211</startdate><enddate>20221211</enddate><creator>Samuel, Agnes M</creator><creator>Zedan, Yasser</creator><creator>Elsharkawi, Ehab A</creator><creator>Abdelaziz, Mohamed H</creator><creator>Samuel, Fawzy H</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7222-8694</orcidid><orcidid>https://orcid.org/0000-0001-5821-9310</orcidid></search><sort><creationdate>20221211</creationdate><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><author>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging (metallurgy)</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Automobile industry</topic><topic>Bending fatigue</topic><topic>Casting alloys</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Data acquisition systems</topic><topic>Die casting</topic><topic>Elastic limit</topic><topic>Elongation</topic><topic>Failure mechanisms</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Guinier Preston zone</topic><topic>Heat treatment</topic><topic>Inclusions</topic><topic>Magnesium</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Oxide coatings</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Surface defects</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Agnes M</creatorcontrib><creatorcontrib>Zedan, Yasser</creatorcontrib><creatorcontrib>Elsharkawi, Ehab A</creatorcontrib><creatorcontrib>Abdelaziz, Mohamed H</creatorcontrib><creatorcontrib>Samuel, Fawzy H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Agnes M</au><au>Zedan, Yasser</au><au>Elsharkawi, Ehab A</au><au>Abdelaziz, Mohamed H</au><au>Samuel, Fawzy H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-11</date><risdate>2022</risdate><volume>15</volume><issue>24</issue><spage>8844</spage><pages>8844-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36556650</pmid><doi>10.3390/ma15248844</doi><orcidid>https://orcid.org/0000-0001-7222-8694</orcidid><orcidid>https://orcid.org/0000-0001-5821-9310</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-12, Vol.15 (24), p.8844
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9785003
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aging (metallurgy)
Alloys
Aluminum base alloys
Automobile industry
Bending fatigue
Casting alloys
Crack initiation
Crack propagation
Data acquisition systems
Die casting
Elastic limit
Elongation
Failure mechanisms
Fatigue
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue strength
Fatigue testing machines
Fatigue tests
Guinier Preston zone
Heat treatment
Inclusions
Magnesium
Materials
Mechanical properties
Metal fatigue
Oxide coatings
Parameters
Propagation
Solidification
Specialty metals industry
Surface defects
Tensile properties
Tensile strength
Tensile tests
title The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Mg%20Content%20and%20Aging%20Treatment%20on%20the%20Tensile%20and%20Fatigue%20Properties%20of%20Die-Cast%20380%20Alloy&rft.jtitle=Materials&rft.au=Samuel,%20Agnes%20M&rft.date=2022-12-11&rft.volume=15&rft.issue=24&rft.spage=8844&rft.pages=8844-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15248844&rft_dat=%3Cgale_pubme%3EA745742707%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756774407&rft_id=info:pmid/36556650&rft_galeid=A745742707&rfr_iscdi=true