The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy
The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on th...
Gespeichert in:
Veröffentlicht in: | Materials 2022-12, Vol.15 (24), p.8844 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 8844 |
container_title | Materials |
container_volume | 15 |
creator | Samuel, Agnes M Zedan, Yasser Elsharkawi, Ehab A Abdelaziz, Mohamed H Samuel, Fawzy H |
description | The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center. |
doi_str_mv | 10.3390/ma15248844 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9785003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742707</galeid><sourcerecordid>A745742707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</originalsourceid><addsrcrecordid>eNpdkV1vFCEUhomxsc3aG3-AIfHGmEyFgRngxmSzWtukRmPWa8IyhynNDKwwY9J_L9NtaytcQA7P-3I-EHpDyRljinwcDW1qLiXnL9AJVaqtqOL85ZP7MTrN-YaUxRiVtXqFjlnbNG3bkBPktteAf8YBcHT4W483MUwQJmxCh9e9Dz3eJjDTuMRiwFOhtxCyL4IFOTeT72fAP1LcQ5o85MXns4dqY_KEmSR4PQzx9jU6cmbIcHp_rtCv8y_bzUV19f3r5WZ9VVnOm6lSRnJjOLQgdoqWkGt2qt5RSTrHa6uME9aajlHiaKc4YZ2rwbSgrDFSWsdW6NPBdz_vRuhsSTuZQe-TH0261dF4_fwl-Gvdxz9aCdksDVqh9_cGKf6eIU969NnCMJgAcc66Fo2kRBJaF_Tdf-hNnFMo5S1UKwTnRBTq7ED1ZgDtg4vlX1t2B6O3MYArvdRrwRvBa3En-HAQ2BRzTuAes6dELyPX_0Ze4LdP631EHwbM_gJDpKV0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756774407</pqid></control><display><type>article</type><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</creator><creatorcontrib>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</creatorcontrib><description>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15248844</identifier><identifier>PMID: 36556650</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aging (metallurgy) ; Alloys ; Aluminum base alloys ; Automobile industry ; Bending fatigue ; Casting alloys ; Crack initiation ; Crack propagation ; Data acquisition systems ; Die casting ; Elastic limit ; Elongation ; Failure mechanisms ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue strength ; Fatigue testing machines ; Fatigue tests ; Guinier Preston zone ; Heat treatment ; Inclusions ; Magnesium ; Materials ; Mechanical properties ; Metal fatigue ; Oxide coatings ; Parameters ; Propagation ; Solidification ; Specialty metals industry ; Surface defects ; Tensile properties ; Tensile strength ; Tensile tests</subject><ispartof>Materials, 2022-12, Vol.15 (24), p.8844</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</citedby><cites>FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</cites><orcidid>0000-0001-7222-8694 ; 0000-0001-5821-9310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9785003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36556650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samuel, Agnes M</creatorcontrib><creatorcontrib>Zedan, Yasser</creatorcontrib><creatorcontrib>Elsharkawi, Ehab A</creatorcontrib><creatorcontrib>Abdelaziz, Mohamed H</creatorcontrib><creatorcontrib>Samuel, Fawzy H</creatorcontrib><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</description><subject>Aging (metallurgy)</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Automobile industry</subject><subject>Bending fatigue</subject><subject>Casting alloys</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Data acquisition systems</subject><subject>Die casting</subject><subject>Elastic limit</subject><subject>Elongation</subject><subject>Failure mechanisms</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Guinier Preston zone</subject><subject>Heat treatment</subject><subject>Inclusions</subject><subject>Magnesium</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Oxide coatings</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Surface defects</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1vFCEUhomxsc3aG3-AIfHGmEyFgRngxmSzWtukRmPWa8IyhynNDKwwY9J_L9NtaytcQA7P-3I-EHpDyRljinwcDW1qLiXnL9AJVaqtqOL85ZP7MTrN-YaUxRiVtXqFjlnbNG3bkBPktteAf8YBcHT4W483MUwQJmxCh9e9Dz3eJjDTuMRiwFOhtxCyL4IFOTeT72fAP1LcQ5o85MXns4dqY_KEmSR4PQzx9jU6cmbIcHp_rtCv8y_bzUV19f3r5WZ9VVnOm6lSRnJjOLQgdoqWkGt2qt5RSTrHa6uME9aajlHiaKc4YZ2rwbSgrDFSWsdW6NPBdz_vRuhsSTuZQe-TH0261dF4_fwl-Gvdxz9aCdksDVqh9_cGKf6eIU969NnCMJgAcc66Fo2kRBJaF_Tdf-hNnFMo5S1UKwTnRBTq7ED1ZgDtg4vlX1t2B6O3MYArvdRrwRvBa3En-HAQ2BRzTuAes6dELyPX_0Ze4LdP631EHwbM_gJDpKV0</recordid><startdate>20221211</startdate><enddate>20221211</enddate><creator>Samuel, Agnes M</creator><creator>Zedan, Yasser</creator><creator>Elsharkawi, Ehab A</creator><creator>Abdelaziz, Mohamed H</creator><creator>Samuel, Fawzy H</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7222-8694</orcidid><orcidid>https://orcid.org/0000-0001-5821-9310</orcidid></search><sort><creationdate>20221211</creationdate><title>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</title><author>Samuel, Agnes M ; Zedan, Yasser ; Elsharkawi, Ehab A ; Abdelaziz, Mohamed H ; Samuel, Fawzy H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9a84aa4e6e7b91445f5b92b180df42c9af7ccad310f1d9403df2ea6e9caa88cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging (metallurgy)</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Automobile industry</topic><topic>Bending fatigue</topic><topic>Casting alloys</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Data acquisition systems</topic><topic>Die casting</topic><topic>Elastic limit</topic><topic>Elongation</topic><topic>Failure mechanisms</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Guinier Preston zone</topic><topic>Heat treatment</topic><topic>Inclusions</topic><topic>Magnesium</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Oxide coatings</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Surface defects</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Agnes M</creatorcontrib><creatorcontrib>Zedan, Yasser</creatorcontrib><creatorcontrib>Elsharkawi, Ehab A</creatorcontrib><creatorcontrib>Abdelaziz, Mohamed H</creatorcontrib><creatorcontrib>Samuel, Fawzy H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samuel, Agnes M</au><au>Zedan, Yasser</au><au>Elsharkawi, Ehab A</au><au>Abdelaziz, Mohamed H</au><au>Samuel, Fawzy H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-11</date><risdate>2022</risdate><volume>15</volume><issue>24</issue><spage>8844</spage><pages>8844-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The main objective of this contribution was to determine the impact of magnesium (Mg) concentration and solidification rate (about 800 °C/s) on the mechanical properties of commercial A380.1 die-cast alloy. Respective amounts of 0.10%, 0.30%, and 0.50% Mg were used to establish their influence on the main tensile properties, namely, the ultimate limit, the elastic limit, and the percentage of elongation to fracture. The study also focused on the effect of magnesium on the fatigue behavior of A380.1 alloy where the role of surface defects and internal defects (porosity, oxide films, and inclusions) on the alloy fatigue life was also determined. The tensile properties were analyzed in order to optimize the heat treatments of T6 (under-aging) and T7 (over-aging). Consequently, the influence of several parameters was evaluated using tensile testing and optical and scanning electron micrography. Fatigue strength was investigated by performing rotational bending tests. The results show that the alloy tensile strength parameters improve with up to 0.3% Mg. Further addition of Mg, i.e., 0.5%, does not produce any significant improvement with respect to either traction or fatigue. It is observed that the tensile properties fluctuate according to the Guinier-Preston zones which occur during heat treatment, while the fatigue properties decrease as the Mg content increases. In contrast to a mechanical fatigue failure mechanism, in the present study, cracks were initiated at the sample's outer surface and then propagated toward the center.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36556650</pmid><doi>10.3390/ma15248844</doi><orcidid>https://orcid.org/0000-0001-7222-8694</orcidid><orcidid>https://orcid.org/0000-0001-5821-9310</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-12, Vol.15 (24), p.8844 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9785003 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aging (metallurgy) Alloys Aluminum base alloys Automobile industry Bending fatigue Casting alloys Crack initiation Crack propagation Data acquisition systems Die casting Elastic limit Elongation Failure mechanisms Fatigue Fatigue cracks Fatigue failure Fatigue life Fatigue strength Fatigue testing machines Fatigue tests Guinier Preston zone Heat treatment Inclusions Magnesium Materials Mechanical properties Metal fatigue Oxide coatings Parameters Propagation Solidification Specialty metals industry Surface defects Tensile properties Tensile strength Tensile tests |
title | The Role of Mg Content and Aging Treatment on the Tensile and Fatigue Properties of Die-Cast 380 Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Mg%20Content%20and%20Aging%20Treatment%20on%20the%20Tensile%20and%20Fatigue%20Properties%20of%20Die-Cast%20380%20Alloy&rft.jtitle=Materials&rft.au=Samuel,%20Agnes%20M&rft.date=2022-12-11&rft.volume=15&rft.issue=24&rft.spage=8844&rft.pages=8844-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15248844&rft_dat=%3Cgale_pubme%3EA745742707%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756774407&rft_id=info:pmid/36556650&rft_galeid=A745742707&rfr_iscdi=true |