An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations
Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20210365 |
---|---|
container_issue | 2234 |
container_start_page | 20210365 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 380 |
creator | Lohr, Matthew J Sugerman, Gabriella P Kakaletsis, Sotirios Lejeune, Emma Rausch, Manuel K |
description | Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'. |
doi_str_mv | 10.1098/rsta.2021.0365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707878056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</originalsourceid><addsrcrecordid>eNpVkc1LJDEQxYMo6qpXj5KjB3vMR3eS9iDI4K6C4EXBW0jSFSfSnYydjOB_bw8zinuqot6rVwU_hE4pmVHSqssxFzNjhNEZ4aLZQYe0lrRirWC7U89FXTWEvxygPzm_EUKpaNg-OuCCcKq4OkT2JuIQy5i6lSshRVwSLgvAj68dRDykDvpJxzakAdzCxODyFbYQwYeSL3AYlj0MEIvZLqc-YxM73IchbIb5GO1502c42dYj9Pz39ml-Vz08_ruf3zxUrm7bUnWtg9q2xjLecusF914a76xTDKjzjAHpGiapINIKZriyvKsZ4Q2R3nCr-BG63uQuV3aAzk1fjabXyzEMZvzUyQT9vxLDQr-mD91KVVNCp4DzbcCY3leQix5CdtD3JkJaZc0kkUoq0ojJOttY3ZhyHsH_nKFEr8HoNRi9BqPXYKaFs9_P_di_SfAvs4qNHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707878056</pqid></control><display><type>article</type><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><creator>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</creator><creatorcontrib>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</creatorcontrib><description>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2021.0365</identifier><identifier>PMID: 36031838</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biomechanical Phenomena ; Brain ; Elasticity ; Finite Element Analysis ; Models, Biological ; Stress, Mechanical</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365</ispartof><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</citedby><cites>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</cites><orcidid>0000-0003-3944-6651 ; 0000-0001-9904-5257 ; 0000-0001-9400-9265 ; 0000-0003-1337-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36031838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lohr, Matthew J</creatorcontrib><creatorcontrib>Sugerman, Gabriella P</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Lejeune, Emma</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</description><subject>Biomechanical Phenomena</subject><subject>Brain</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Models, Biological</subject><subject>Stress, Mechanical</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LJDEQxYMo6qpXj5KjB3vMR3eS9iDI4K6C4EXBW0jSFSfSnYydjOB_bw8zinuqot6rVwU_hE4pmVHSqssxFzNjhNEZ4aLZQYe0lrRirWC7U89FXTWEvxygPzm_EUKpaNg-OuCCcKq4OkT2JuIQy5i6lSshRVwSLgvAj68dRDykDvpJxzakAdzCxODyFbYQwYeSL3AYlj0MEIvZLqc-YxM73IchbIb5GO1502c42dYj9Pz39ml-Vz08_ruf3zxUrm7bUnWtg9q2xjLecusF914a76xTDKjzjAHpGiapINIKZriyvKsZ4Q2R3nCr-BG63uQuV3aAzk1fjabXyzEMZvzUyQT9vxLDQr-mD91KVVNCp4DzbcCY3leQix5CdtD3JkJaZc0kkUoq0ojJOttY3ZhyHsH_nKFEr8HoNRi9BqPXYKaFs9_P_di_SfAvs4qNHg</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Lohr, Matthew J</creator><creator>Sugerman, Gabriella P</creator><creator>Kakaletsis, Sotirios</creator><creator>Lejeune, Emma</creator><creator>Rausch, Manuel K</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3944-6651</orcidid><orcidid>https://orcid.org/0000-0001-9904-5257</orcidid><orcidid>https://orcid.org/0000-0001-9400-9265</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid></search><sort><creationdate>20221017</creationdate><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><author>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomechanical Phenomena</topic><topic>Brain</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Models, Biological</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohr, Matthew J</creatorcontrib><creatorcontrib>Sugerman, Gabriella P</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Lejeune, Emma</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohr, Matthew J</au><au>Sugerman, Gabriella P</au><au>Kakaletsis, Sotirios</au><au>Lejeune, Emma</au><au>Rausch, Manuel K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2022-10-17</date><risdate>2022</risdate><volume>380</volume><issue>2234</issue><spage>20210365</spage><epage>20210365</epage><pages>20210365-20210365</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>36031838</pmid><doi>10.1098/rsta.2021.0365</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3944-6651</orcidid><orcidid>https://orcid.org/0000-0001-9904-5257</orcidid><orcidid>https://orcid.org/0000-0001-9400-9265</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784101 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection |
subjects | Biomechanical Phenomena Brain Elasticity Finite Element Analysis Models, Biological Stress, Mechanical |
title | An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20introduction%20to%20the%20Ogden%20model%20in%20biomechanics:%20benefits,%20implementation%20tools%20and%20limitations&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Lohr,%20Matthew%20J&rft.date=2022-10-17&rft.volume=380&rft.issue=2234&rft.spage=20210365&rft.epage=20210365&rft.pages=20210365-20210365&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2021.0365&rft_dat=%3Cproquest_pubme%3E2707878056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707878056&rft_id=info:pmid/36031838&rfr_iscdi=true |