An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations

Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365
Hauptverfasser: Lohr, Matthew J, Sugerman, Gabriella P, Kakaletsis, Sotirios, Lejeune, Emma, Rausch, Manuel K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20210365
container_issue 2234
container_start_page 20210365
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 380
creator Lohr, Matthew J
Sugerman, Gabriella P
Kakaletsis, Sotirios
Lejeune, Emma
Rausch, Manuel K
description Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.
doi_str_mv 10.1098/rsta.2021.0365
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707878056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</originalsourceid><addsrcrecordid>eNpVkc1LJDEQxYMo6qpXj5KjB3vMR3eS9iDI4K6C4EXBW0jSFSfSnYydjOB_bw8zinuqot6rVwU_hE4pmVHSqssxFzNjhNEZ4aLZQYe0lrRirWC7U89FXTWEvxygPzm_EUKpaNg-OuCCcKq4OkT2JuIQy5i6lSshRVwSLgvAj68dRDykDvpJxzakAdzCxODyFbYQwYeSL3AYlj0MEIvZLqc-YxM73IchbIb5GO1502c42dYj9Pz39ml-Vz08_ruf3zxUrm7bUnWtg9q2xjLecusF914a76xTDKjzjAHpGiapINIKZriyvKsZ4Q2R3nCr-BG63uQuV3aAzk1fjabXyzEMZvzUyQT9vxLDQr-mD91KVVNCp4DzbcCY3leQix5CdtD3JkJaZc0kkUoq0ojJOttY3ZhyHsH_nKFEr8HoNRi9BqPXYKaFs9_P_di_SfAvs4qNHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707878056</pqid></control><display><type>article</type><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><creator>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</creator><creatorcontrib>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</creatorcontrib><description>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2021.0365</identifier><identifier>PMID: 36031838</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Biomechanical Phenomena ; Brain ; Elasticity ; Finite Element Analysis ; Models, Biological ; Stress, Mechanical</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365</ispartof><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</citedby><cites>FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</cites><orcidid>0000-0003-3944-6651 ; 0000-0001-9904-5257 ; 0000-0001-9400-9265 ; 0000-0003-1337-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36031838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lohr, Matthew J</creatorcontrib><creatorcontrib>Sugerman, Gabriella P</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Lejeune, Emma</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</description><subject>Biomechanical Phenomena</subject><subject>Brain</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Models, Biological</subject><subject>Stress, Mechanical</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1LJDEQxYMo6qpXj5KjB3vMR3eS9iDI4K6C4EXBW0jSFSfSnYydjOB_bw8zinuqot6rVwU_hE4pmVHSqssxFzNjhNEZ4aLZQYe0lrRirWC7U89FXTWEvxygPzm_EUKpaNg-OuCCcKq4OkT2JuIQy5i6lSshRVwSLgvAj68dRDykDvpJxzakAdzCxODyFbYQwYeSL3AYlj0MEIvZLqc-YxM73IchbIb5GO1502c42dYj9Pz39ml-Vz08_ruf3zxUrm7bUnWtg9q2xjLecusF914a76xTDKjzjAHpGiapINIKZriyvKsZ4Q2R3nCr-BG63uQuV3aAzk1fjabXyzEMZvzUyQT9vxLDQr-mD91KVVNCp4DzbcCY3leQix5CdtD3JkJaZc0kkUoq0ojJOttY3ZhyHsH_nKFEr8HoNRi9BqPXYKaFs9_P_di_SfAvs4qNHg</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Lohr, Matthew J</creator><creator>Sugerman, Gabriella P</creator><creator>Kakaletsis, Sotirios</creator><creator>Lejeune, Emma</creator><creator>Rausch, Manuel K</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3944-6651</orcidid><orcidid>https://orcid.org/0000-0001-9904-5257</orcidid><orcidid>https://orcid.org/0000-0001-9400-9265</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid></search><sort><creationdate>20221017</creationdate><title>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</title><author>Lohr, Matthew J ; Sugerman, Gabriella P ; Kakaletsis, Sotirios ; Lejeune, Emma ; Rausch, Manuel K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-d9ce4b9ab2393bf63ff7afcbc82e1cf22e0d5271607b62a38b3d4203507fa3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomechanical Phenomena</topic><topic>Brain</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Models, Biological</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohr, Matthew J</creatorcontrib><creatorcontrib>Sugerman, Gabriella P</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Lejeune, Emma</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohr, Matthew J</au><au>Sugerman, Gabriella P</au><au>Kakaletsis, Sotirios</au><au>Lejeune, Emma</au><au>Rausch, Manuel K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2022-10-17</date><risdate>2022</risdate><volume>380</volume><issue>2234</issue><spage>20210365</spage><epage>20210365</epage><pages>20210365-20210365</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>36031838</pmid><doi>10.1098/rsta.2021.0365</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3944-6651</orcidid><orcidid>https://orcid.org/0000-0001-9904-5257</orcidid><orcidid>https://orcid.org/0000-0001-9400-9265</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2022-10, Vol.380 (2234), p.20210365-20210365
issn 1364-503X
1471-2962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9784101
source MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection
subjects Biomechanical Phenomena
Brain
Elasticity
Finite Element Analysis
Models, Biological
Stress, Mechanical
title An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20introduction%20to%20the%20Ogden%20model%20in%20biomechanics:%20benefits,%20implementation%20tools%20and%20limitations&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Lohr,%20Matthew%20J&rft.date=2022-10-17&rft.volume=380&rft.issue=2234&rft.spage=20210365&rft.epage=20210365&rft.pages=20210365-20210365&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2021.0365&rft_dat=%3Cproquest_pubme%3E2707878056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707878056&rft_id=info:pmid/36031838&rfr_iscdi=true