Aromatic Polyimide Membranes with tert -Butyl and Carboxylic Side Groups for Gas Separation Applications-Covalent Crosslinking Study

A set of aromatic copolyimides was obtained by reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and mixtures of the diamines 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2,5-di- -butylbenzene (CF TBAPB) and 3,5-diamino benzoic acid (DABA). These polymers were characterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-12, Vol.14 (24), p.5517
Hauptverfasser: Esteban, Noelia, Juan-Y-Seva, Marta, Aguilar-Lugo, Carla, Miguel, Jesús A, Staudt, Claudia, de la Campa, José G, Álvarez, Cristina, Lozano, Ángel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set of aromatic copolyimides was obtained by reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and mixtures of the diamines 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2,5-di- -butylbenzene (CF TBAPB) and 3,5-diamino benzoic acid (DABA). These polymers were characterized and compared with the homopolymer derived from 6FDA and CF TBAPB. All copolyimides showed high molecular weight values and good mechanical properties. The presence of carboxylic groups in these copolymers allowed their chemical crosslinking by reaction with 1,4-butanediol. Glass transition temperatures (Tg) were higher than 260 °C, showing the non-crosslinked copolyimides had the highest Tg values. Degradation temperature of crosslinked copolyimides was lower than their corresponding non-crosslinked ones. Mechanical properties of all polymers were good, and thus, copolyimide (precursor, and crosslinked ones) films could be tested as gas separation membranes. It was observed that CO permeability values were around 100 barrer. Finally, the plasticization resistance of the crosslinked material having a large number of carboxylic groups was excellent.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14245517