TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens
Recent genome-wide association studies have suggested novel risk loci associated with periodontitis, which is initiated by dysbiosis in subgingival plaque and leads to destruction of teeth-supporting structures. One such genetic locus was the tumor necrosis factor receptor–associated factor 3 intera...
Gespeichert in:
Veröffentlicht in: | Journal of dental research 2023-01, Vol.102 (1), p.103-115 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Journal of dental research |
container_volume | 102 |
creator | Zhang, J. Sun, L. Withanage, M.H.H. Ganesan, S.M. Williamson, M.A. Marchesan, J.T. Jiao, Y. Teles, F.R. Yu, N. Liu, Y. Wu, D. Moss, K.L. Mangalam, A.K. Zeng, E. Lei, Y.L. Zhang, S. |
description | Recent genome-wide association studies have suggested novel risk loci associated with periodontitis, which is initiated by dysbiosis in subgingival plaque and leads to destruction of teeth-supporting structures. One such genetic locus was the tumor necrosis factor receptor–associated factor 3 interacting protein 2 (TRAF3IP2), a gene encoding the gate-keeping interleukin (IL)–17 receptor adaptor. In this study, we first determined that carriers of the lead exonic variant rs13190932 within the TRAF3IP2 locus combined with a high plaque microbial burden was associated with more severe periodontitis than noncarriers. We then demonstrated that TRAF3IP2 is essential in the IL-17–mediated CCL2 and IL-8 chemokine production in primary gingival epithelial cells. Further analysis suggested that rs13190932 may serve a surrogate variant for a genuine loss-of-function variant rs33980500 within the same gene. Traf3ip2 null mice (Traf3ip2–/–) were more susceptible than wild-type (WT) mice to the Porphyromonas gingivalis–induced periodontal alveolar bone loss. Such bone loss was associated with a delayed P. gingivalis clearance and an attenuated neutrophil recruitment in the gingiva of Traf3ip2–/– mice. Transcriptomic data showed decreased expression of antimicrobial genes, including Lcn2, S100a8, and Defb1, in the Traf3ip2–/– mouse gingiva in comparison to WT mice prior to or upon P. gingivalis oral challenge. Further 16S ribosomal RNA sequencing analysis identified a distinct microbial community in the Traf3ip2–/– mouse oral plaque, which was featured by a reduced microbial diversity and an overabundance of Streptococcus genus bacteria. More P. gingivalis was observed in the Traf3ip2–/– mouse gingiva than WT control animals in a ligature-promoted P. gingivalis invasion model. In agreement, neutrophil depletion resulted in more local gingival tissue invasion by P. gingivalis. Thus, we identified a homeostatic IL-17-TRAF3IP2-neutrophil axis underpinning host defense against a keystone periodontal pathogen. |
doi_str_mv | 10.1177/00220345221123256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00220345221123256</sage_id><sourcerecordid>2756618753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-36aed84104eaa30a6e6154d9be1754f89902923bd9df7b4e9104412230e83ffc3</originalsourceid><addsrcrecordid>eNp1kc1Kw0AQxxdRbK0-gBcJePGSul_ZzV6EUu0HFCxaz8s2maQpaaLZtOjNd_ANfRK3tNYvvMzAzG_-M8MfoVOC24RIeYkxpZjxgFJCKKOB2ENNEnDu40CRfdRc9_010EBH1s4xJoqG7BA1mKAhwSJoosHkrtNjwzF9f30bjnwivc5zZr37uoIirWdQWM9Fr58VabYyuXcNiauBZ1KTFbb2xqaelakrHaODxOQWTra5hR56N5PuwB_d9ofdzsiPuBC1z4SBOOQEczCGYSNAuItjNQUiA56ESmGqKJvGKk7klINyJCeUMgwhS5KItdDVRvdxOV1AHEFRVybXj1W2MNWLLk2mf3aKbKbTcqWVDLEMmBO42ApU5dMSbK0XmY0gz00B5dJqKmnIhaRcOvT8Fzovl1Xh3nNUIAQJN4JkQ0VVaW0Fye4YgvXaJ_3HJzdz9v2L3cSnMQ5obwBrUvha-7_iB02zmPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756618753</pqid></control><display><type>article</type><title>TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens</title><source>MEDLINE</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, J. ; Sun, L. ; Withanage, M.H.H. ; Ganesan, S.M. ; Williamson, M.A. ; Marchesan, J.T. ; Jiao, Y. ; Teles, F.R. ; Yu, N. ; Liu, Y. ; Wu, D. ; Moss, K.L. ; Mangalam, A.K. ; Zeng, E. ; Lei, Y.L. ; Zhang, S.</creator><creatorcontrib>Zhang, J. ; Sun, L. ; Withanage, M.H.H. ; Ganesan, S.M. ; Williamson, M.A. ; Marchesan, J.T. ; Jiao, Y. ; Teles, F.R. ; Yu, N. ; Liu, Y. ; Wu, D. ; Moss, K.L. ; Mangalam, A.K. ; Zeng, E. ; Lei, Y.L. ; Zhang, S.</creatorcontrib><description>Recent genome-wide association studies have suggested novel risk loci associated with periodontitis, which is initiated by dysbiosis in subgingival plaque and leads to destruction of teeth-supporting structures. One such genetic locus was the tumor necrosis factor receptor–associated factor 3 interacting protein 2 (TRAF3IP2), a gene encoding the gate-keeping interleukin (IL)–17 receptor adaptor. In this study, we first determined that carriers of the lead exonic variant rs13190932 within the TRAF3IP2 locus combined with a high plaque microbial burden was associated with more severe periodontitis than noncarriers. We then demonstrated that TRAF3IP2 is essential in the IL-17–mediated CCL2 and IL-8 chemokine production in primary gingival epithelial cells. Further analysis suggested that rs13190932 may serve a surrogate variant for a genuine loss-of-function variant rs33980500 within the same gene. Traf3ip2 null mice (Traf3ip2–/–) were more susceptible than wild-type (WT) mice to the Porphyromonas gingivalis–induced periodontal alveolar bone loss. Such bone loss was associated with a delayed P. gingivalis clearance and an attenuated neutrophil recruitment in the gingiva of Traf3ip2–/– mice. Transcriptomic data showed decreased expression of antimicrobial genes, including Lcn2, S100a8, and Defb1, in the Traf3ip2–/– mouse gingiva in comparison to WT mice prior to or upon P. gingivalis oral challenge. Further 16S ribosomal RNA sequencing analysis identified a distinct microbial community in the Traf3ip2–/– mouse oral plaque, which was featured by a reduced microbial diversity and an overabundance of Streptococcus genus bacteria. More P. gingivalis was observed in the Traf3ip2–/– mouse gingiva than WT control animals in a ligature-promoted P. gingivalis invasion model. In agreement, neutrophil depletion resulted in more local gingival tissue invasion by P. gingivalis. Thus, we identified a homeostatic IL-17-TRAF3IP2-neutrophil axis underpinning host defense against a keystone periodontal pathogen.</description><identifier>ISSN: 0022-0345</identifier><identifier>EISSN: 1544-0591</identifier><identifier>DOI: 10.1177/00220345221123256</identifier><identifier>PMID: 36281065</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Adaptor proteins ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Alveolar bone ; Alveolar Bone Loss - metabolism ; Animals ; Bone loss ; Chemokines ; Dysbacteriosis ; Epithelial cells ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Gingiva ; Gingiva - metabolism ; Gum disease ; Interleukin 17 ; Interleukin 8 ; Interleukin-17 - metabolism ; Leukocytes (neutrophilic) ; Mice ; Mice, Knockout ; Monocyte chemoattractant protein 1 ; Neutrophils ; Pathogens ; Periodontitis ; Periodontitis - microbiology ; Porphyromonas gingivalis ; Research Reports ; rRNA 16S ; Sequence analysis ; Transcriptomics</subject><ispartof>Journal of dental research, 2023-01, Vol.102 (1), p.103-115</ispartof><rights>International Association for Dental Research and American Association for Dental, Oral, and Craniofacial Research 2022</rights><rights>International Association for Dental Research and American Association for Dental, Oral, and Craniofacial Research 2022 2022 International & American Associations for Dental Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-36aed84104eaa30a6e6154d9be1754f89902923bd9df7b4e9104412230e83ffc3</citedby><cites>FETCH-LOGICAL-c466t-36aed84104eaa30a6e6154d9be1754f89902923bd9df7b4e9104412230e83ffc3</cites><orcidid>0000-0003-0610-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00220345221123256$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00220345221123256$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36281065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Withanage, M.H.H.</creatorcontrib><creatorcontrib>Ganesan, S.M.</creatorcontrib><creatorcontrib>Williamson, M.A.</creatorcontrib><creatorcontrib>Marchesan, J.T.</creatorcontrib><creatorcontrib>Jiao, Y.</creatorcontrib><creatorcontrib>Teles, F.R.</creatorcontrib><creatorcontrib>Yu, N.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Wu, D.</creatorcontrib><creatorcontrib>Moss, K.L.</creatorcontrib><creatorcontrib>Mangalam, A.K.</creatorcontrib><creatorcontrib>Zeng, E.</creatorcontrib><creatorcontrib>Lei, Y.L.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><title>TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens</title><title>Journal of dental research</title><addtitle>J Dent Res</addtitle><description>Recent genome-wide association studies have suggested novel risk loci associated with periodontitis, which is initiated by dysbiosis in subgingival plaque and leads to destruction of teeth-supporting structures. One such genetic locus was the tumor necrosis factor receptor–associated factor 3 interacting protein 2 (TRAF3IP2), a gene encoding the gate-keeping interleukin (IL)–17 receptor adaptor. In this study, we first determined that carriers of the lead exonic variant rs13190932 within the TRAF3IP2 locus combined with a high plaque microbial burden was associated with more severe periodontitis than noncarriers. We then demonstrated that TRAF3IP2 is essential in the IL-17–mediated CCL2 and IL-8 chemokine production in primary gingival epithelial cells. Further analysis suggested that rs13190932 may serve a surrogate variant for a genuine loss-of-function variant rs33980500 within the same gene. Traf3ip2 null mice (Traf3ip2–/–) were more susceptible than wild-type (WT) mice to the Porphyromonas gingivalis–induced periodontal alveolar bone loss. Such bone loss was associated with a delayed P. gingivalis clearance and an attenuated neutrophil recruitment in the gingiva of Traf3ip2–/– mice. Transcriptomic data showed decreased expression of antimicrobial genes, including Lcn2, S100a8, and Defb1, in the Traf3ip2–/– mouse gingiva in comparison to WT mice prior to or upon P. gingivalis oral challenge. Further 16S ribosomal RNA sequencing analysis identified a distinct microbial community in the Traf3ip2–/– mouse oral plaque, which was featured by a reduced microbial diversity and an overabundance of Streptococcus genus bacteria. More P. gingivalis was observed in the Traf3ip2–/– mouse gingiva than WT control animals in a ligature-promoted P. gingivalis invasion model. In agreement, neutrophil depletion resulted in more local gingival tissue invasion by P. gingivalis. Thus, we identified a homeostatic IL-17-TRAF3IP2-neutrophil axis underpinning host defense against a keystone periodontal pathogen.</description><subject>Adaptor proteins</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Alveolar bone</subject><subject>Alveolar Bone Loss - metabolism</subject><subject>Animals</subject><subject>Bone loss</subject><subject>Chemokines</subject><subject>Dysbacteriosis</subject><subject>Epithelial cells</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Gingiva</subject><subject>Gingiva - metabolism</subject><subject>Gum disease</subject><subject>Interleukin 17</subject><subject>Interleukin 8</subject><subject>Interleukin-17 - metabolism</subject><subject>Leukocytes (neutrophilic)</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Neutrophils</subject><subject>Pathogens</subject><subject>Periodontitis</subject><subject>Periodontitis - microbiology</subject><subject>Porphyromonas gingivalis</subject><subject>Research Reports</subject><subject>rRNA 16S</subject><subject>Sequence analysis</subject><subject>Transcriptomics</subject><issn>0022-0345</issn><issn>1544-0591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1Kw0AQxxdRbK0-gBcJePGSul_ZzV6EUu0HFCxaz8s2maQpaaLZtOjNd_ANfRK3tNYvvMzAzG_-M8MfoVOC24RIeYkxpZjxgFJCKKOB2ENNEnDu40CRfdRc9_010EBH1s4xJoqG7BA1mKAhwSJoosHkrtNjwzF9f30bjnwivc5zZr37uoIirWdQWM9Fr58VabYyuXcNiauBZ1KTFbb2xqaelakrHaODxOQWTra5hR56N5PuwB_d9ofdzsiPuBC1z4SBOOQEczCGYSNAuItjNQUiA56ESmGqKJvGKk7klINyJCeUMgwhS5KItdDVRvdxOV1AHEFRVybXj1W2MNWLLk2mf3aKbKbTcqWVDLEMmBO42ApU5dMSbK0XmY0gz00B5dJqKmnIhaRcOvT8Fzovl1Xh3nNUIAQJN4JkQ0VVaW0Fye4YgvXaJ_3HJzdz9v2L3cSnMQ5obwBrUvha-7_iB02zmPo</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, J.</creator><creator>Sun, L.</creator><creator>Withanage, M.H.H.</creator><creator>Ganesan, S.M.</creator><creator>Williamson, M.A.</creator><creator>Marchesan, J.T.</creator><creator>Jiao, Y.</creator><creator>Teles, F.R.</creator><creator>Yu, N.</creator><creator>Liu, Y.</creator><creator>Wu, D.</creator><creator>Moss, K.L.</creator><creator>Mangalam, A.K.</creator><creator>Zeng, E.</creator><creator>Lei, Y.L.</creator><creator>Zhang, S.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AFRWT</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>U9A</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0610-3193</orcidid></search><sort><creationdate>20230101</creationdate><title>TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens</title><author>Zhang, J. ; Sun, L. ; Withanage, M.H.H. ; Ganesan, S.M. ; Williamson, M.A. ; Marchesan, J.T. ; Jiao, Y. ; Teles, F.R. ; Yu, N. ; Liu, Y. ; Wu, D. ; Moss, K.L. ; Mangalam, A.K. ; Zeng, E. ; Lei, Y.L. ; Zhang, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-36aed84104eaa30a6e6154d9be1754f89902923bd9df7b4e9104412230e83ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptor proteins</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Alveolar bone</topic><topic>Alveolar Bone Loss - metabolism</topic><topic>Animals</topic><topic>Bone loss</topic><topic>Chemokines</topic><topic>Dysbacteriosis</topic><topic>Epithelial cells</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Gingiva</topic><topic>Gingiva - metabolism</topic><topic>Gum disease</topic><topic>Interleukin 17</topic><topic>Interleukin 8</topic><topic>Interleukin-17 - metabolism</topic><topic>Leukocytes (neutrophilic)</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Neutrophils</topic><topic>Pathogens</topic><topic>Periodontitis</topic><topic>Periodontitis - microbiology</topic><topic>Porphyromonas gingivalis</topic><topic>Research Reports</topic><topic>rRNA 16S</topic><topic>Sequence analysis</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Sun, L.</creatorcontrib><creatorcontrib>Withanage, M.H.H.</creatorcontrib><creatorcontrib>Ganesan, S.M.</creatorcontrib><creatorcontrib>Williamson, M.A.</creatorcontrib><creatorcontrib>Marchesan, J.T.</creatorcontrib><creatorcontrib>Jiao, Y.</creatorcontrib><creatorcontrib>Teles, F.R.</creatorcontrib><creatorcontrib>Yu, N.</creatorcontrib><creatorcontrib>Liu, Y.</creatorcontrib><creatorcontrib>Wu, D.</creatorcontrib><creatorcontrib>Moss, K.L.</creatorcontrib><creatorcontrib>Mangalam, A.K.</creatorcontrib><creatorcontrib>Zeng, E.</creatorcontrib><creatorcontrib>Lei, Y.L.</creatorcontrib><creatorcontrib>Zhang, S.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, J.</au><au>Sun, L.</au><au>Withanage, M.H.H.</au><au>Ganesan, S.M.</au><au>Williamson, M.A.</au><au>Marchesan, J.T.</au><au>Jiao, Y.</au><au>Teles, F.R.</au><au>Yu, N.</au><au>Liu, Y.</au><au>Wu, D.</au><au>Moss, K.L.</au><au>Mangalam, A.K.</au><au>Zeng, E.</au><au>Lei, Y.L.</au><au>Zhang, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens</atitle><jtitle>Journal of dental research</jtitle><addtitle>J Dent Res</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>102</volume><issue>1</issue><spage>103</spage><epage>115</epage><pages>103-115</pages><issn>0022-0345</issn><eissn>1544-0591</eissn><abstract>Recent genome-wide association studies have suggested novel risk loci associated with periodontitis, which is initiated by dysbiosis in subgingival plaque and leads to destruction of teeth-supporting structures. One such genetic locus was the tumor necrosis factor receptor–associated factor 3 interacting protein 2 (TRAF3IP2), a gene encoding the gate-keeping interleukin (IL)–17 receptor adaptor. In this study, we first determined that carriers of the lead exonic variant rs13190932 within the TRAF3IP2 locus combined with a high plaque microbial burden was associated with more severe periodontitis than noncarriers. We then demonstrated that TRAF3IP2 is essential in the IL-17–mediated CCL2 and IL-8 chemokine production in primary gingival epithelial cells. Further analysis suggested that rs13190932 may serve a surrogate variant for a genuine loss-of-function variant rs33980500 within the same gene. Traf3ip2 null mice (Traf3ip2–/–) were more susceptible than wild-type (WT) mice to the Porphyromonas gingivalis–induced periodontal alveolar bone loss. Such bone loss was associated with a delayed P. gingivalis clearance and an attenuated neutrophil recruitment in the gingiva of Traf3ip2–/– mice. Transcriptomic data showed decreased expression of antimicrobial genes, including Lcn2, S100a8, and Defb1, in the Traf3ip2–/– mouse gingiva in comparison to WT mice prior to or upon P. gingivalis oral challenge. Further 16S ribosomal RNA sequencing analysis identified a distinct microbial community in the Traf3ip2–/– mouse oral plaque, which was featured by a reduced microbial diversity and an overabundance of Streptococcus genus bacteria. More P. gingivalis was observed in the Traf3ip2–/– mouse gingiva than WT control animals in a ligature-promoted P. gingivalis invasion model. In agreement, neutrophil depletion resulted in more local gingival tissue invasion by P. gingivalis. Thus, we identified a homeostatic IL-17-TRAF3IP2-neutrophil axis underpinning host defense against a keystone periodontal pathogen.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>36281065</pmid><doi>10.1177/00220345221123256</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0610-3193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0345 |
ispartof | Journal of dental research, 2023-01, Vol.102 (1), p.103-115 |
issn | 0022-0345 1544-0591 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780753 |
source | MEDLINE; SAGE Complete; Alma/SFX Local Collection |
subjects | Adaptor proteins Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Alveolar bone Alveolar Bone Loss - metabolism Animals Bone loss Chemokines Dysbacteriosis Epithelial cells Genome-wide association studies Genome-Wide Association Study Genomes Gingiva Gingiva - metabolism Gum disease Interleukin 17 Interleukin 8 Interleukin-17 - metabolism Leukocytes (neutrophilic) Mice Mice, Knockout Monocyte chemoattractant protein 1 Neutrophils Pathogens Periodontitis Periodontitis - microbiology Porphyromonas gingivalis Research Reports rRNA 16S Sequence analysis Transcriptomics |
title | TRAF3IP2–IL-17 Axis Strengthens the Gingival Defense against Pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRAF3IP2%E2%80%93IL-17%20Axis%20Strengthens%20the%20Gingival%20Defense%20against%20Pathogens&rft.jtitle=Journal%20of%20dental%20research&rft.au=Zhang,%20J.&rft.date=2023-01-01&rft.volume=102&rft.issue=1&rft.spage=103&rft.epage=115&rft.pages=103-115&rft.issn=0022-0345&rft.eissn=1544-0591&rft_id=info:doi/10.1177/00220345221123256&rft_dat=%3Cproquest_pubme%3E2756618753%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756618753&rft_id=info:pmid/36281065&rft_sage_id=10.1177_00220345221123256&rfr_iscdi=true |