Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals
The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal G...
Gespeichert in:
Veröffentlicht in: | Genes 2022-11, Vol.13 (12), p.2247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2247 |
container_title | Genes |
container_volume | 13 |
creator | Wang, Kuiqin Yang, Ben Li, Qi Liu, Shikai |
description | The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the
dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species. |
doi_str_mv | 10.3390/genes13122247 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9778314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745720329</galeid><sourcerecordid>A745720329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-371eba81be216fcf155a9df1c31c9c3137402851b79808f2aa16a26a00acb2d43</originalsourceid><addsrcrecordid>eNptktFr3yAQx2VsrKXt415HYC97SedpjMnLICtdNyh0sO1ZjDlTS6KtJoX-9zNt1_U3quCd5-e-enKEvAN6zHlLP43oMQEHxlglX5F9RiUvq4qJ18_8PXKU0hXNo6KMUvGW7PFaCC6g2ifzz7u04KwXZ4rTWz2t2Qu-CLY4Qx_mHP0RcXDmPtpNY4huuZxTYUN8idB-KL5EzHs_biLdzXov3Xk36ykdkjc2Gzx6tAfk99fTXyffyvOLs-8n3XlpqoYtJZeAvW6gRwa1NRaE0O1gwXAwbV64zJU0AnrZNrSxTGuoNas1pdr0bKj4Afn8oHu99jMOBv0S9aSuY35FvFNBO7V74t2lGsOtaqVsOGwCHx8FYrhZMS1qdsngNGmPYU2KSdEACMlpRj_8h16FNfpc3kbVdQtU1v-oUU-onLch32s2UdXJSkhGOWszdfwCleeA-aODR-tyfCehfEgwMaQU0T7VCFRtLaJ2WiTz759_zBP9tyH4H-JStvo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756691076</pqid></control><display><type>article</type><title>Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Kuiqin ; Yang, Ben ; Li, Qi ; Liu, Shikai</creator><creatorcontrib>Wang, Kuiqin ; Yang, Ben ; Li, Qi ; Liu, Shikai</creatorcontrib><description>The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the
dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes13122247</identifier><identifier>PMID: 36553514</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Animal breeding ; Animals ; Aquaculture ; Aquatic animals ; Bayes Theorem ; Bayesian analysis ; Breeding ; Datasets ; Disease resistance ; Efficiency ; Evaluation ; Genetic aspects ; Genome - genetics ; Genome-wide association studies ; Genome-Wide Association Study ; Genomics ; Genotype & phenotype ; Genotypes ; Hilbert space ; Learning algorithms ; Livestock ; Machine learning ; Methods ; Neural networks ; Phenotypes ; Physiological aspects ; Plant Breeding ; Predictions ; Single-nucleotide polymorphism ; Species ; Trout</subject><ispartof>Genes, 2022-11, Vol.13 (12), p.2247</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-371eba81be216fcf155a9df1c31c9c3137402851b79808f2aa16a26a00acb2d43</citedby><cites>FETCH-LOGICAL-c482t-371eba81be216fcf155a9df1c31c9c3137402851b79808f2aa16a26a00acb2d43</cites><orcidid>0000-0002-5649-9715 ; 0000-0001-5777-489X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778314/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778314/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36553514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Kuiqin</creatorcontrib><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><title>Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the
dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Animal breeding</subject><subject>Animals</subject><subject>Aquaculture</subject><subject>Aquatic animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Breeding</subject><subject>Datasets</subject><subject>Disease resistance</subject><subject>Efficiency</subject><subject>Evaluation</subject><subject>Genetic aspects</subject><subject>Genome - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Hilbert space</subject><subject>Learning algorithms</subject><subject>Livestock</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Plant Breeding</subject><subject>Predictions</subject><subject>Single-nucleotide polymorphism</subject><subject>Species</subject><subject>Trout</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptktFr3yAQx2VsrKXt415HYC97SedpjMnLICtdNyh0sO1ZjDlTS6KtJoX-9zNt1_U3quCd5-e-enKEvAN6zHlLP43oMQEHxlglX5F9RiUvq4qJ18_8PXKU0hXNo6KMUvGW7PFaCC6g2ifzz7u04KwXZ4rTWz2t2Qu-CLY4Qx_mHP0RcXDmPtpNY4huuZxTYUN8idB-KL5EzHs_biLdzXov3Xk36ykdkjc2Gzx6tAfk99fTXyffyvOLs-8n3XlpqoYtJZeAvW6gRwa1NRaE0O1gwXAwbV64zJU0AnrZNrSxTGuoNas1pdr0bKj4Afn8oHu99jMOBv0S9aSuY35FvFNBO7V74t2lGsOtaqVsOGwCHx8FYrhZMS1qdsngNGmPYU2KSdEACMlpRj_8h16FNfpc3kbVdQtU1v-oUU-onLch32s2UdXJSkhGOWszdfwCleeA-aODR-tyfCehfEgwMaQU0T7VCFRtLaJ2WiTz759_zBP9tyH4H-JStvo</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Wang, Kuiqin</creator><creator>Yang, Ben</creator><creator>Li, Qi</creator><creator>Liu, Shikai</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5649-9715</orcidid><orcidid>https://orcid.org/0000-0001-5777-489X</orcidid></search><sort><creationdate>20221129</creationdate><title>Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals</title><author>Wang, Kuiqin ; Yang, Ben ; Li, Qi ; Liu, Shikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-371eba81be216fcf155a9df1c31c9c3137402851b79808f2aa16a26a00acb2d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Animal breeding</topic><topic>Animals</topic><topic>Aquaculture</topic><topic>Aquatic animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Breeding</topic><topic>Datasets</topic><topic>Disease resistance</topic><topic>Efficiency</topic><topic>Evaluation</topic><topic>Genetic aspects</topic><topic>Genome - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Hilbert space</topic><topic>Learning algorithms</topic><topic>Livestock</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Plant Breeding</topic><topic>Predictions</topic><topic>Single-nucleotide polymorphism</topic><topic>Species</topic><topic>Trout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kuiqin</creatorcontrib><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kuiqin</au><au>Yang, Ben</au><au>Li, Qi</au><au>Liu, Shikai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2022-11-29</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>2247</spage><pages>2247-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the
dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36553514</pmid><doi>10.3390/genes13122247</doi><orcidid>https://orcid.org/0000-0002-5649-9715</orcidid><orcidid>https://orcid.org/0000-0001-5777-489X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2022-11, Vol.13 (12), p.2247 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9778314 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Accuracy Algorithms Animal breeding Animals Aquaculture Aquatic animals Bayes Theorem Bayesian analysis Breeding Datasets Disease resistance Efficiency Evaluation Genetic aspects Genome - genetics Genome-wide association studies Genome-Wide Association Study Genomics Genotype & phenotype Genotypes Hilbert space Learning algorithms Livestock Machine learning Methods Neural networks Phenotypes Physiological aspects Plant Breeding Predictions Single-nucleotide polymorphism Species Trout |
title | Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Evaluation%20of%20Genomic%20Prediction%20Algorithms%20for%20Genomic%20Prediction%20and%20Breeding%20of%20Aquatic%20Animals&rft.jtitle=Genes&rft.au=Wang,%20Kuiqin&rft.date=2022-11-29&rft.volume=13&rft.issue=12&rft.spage=2247&rft.pages=2247-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes13122247&rft_dat=%3Cgale_pubme%3EA745720329%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756691076&rft_id=info:pmid/36553514&rft_galeid=A745720329&rfr_iscdi=true |